首页> 外文期刊>Engineering with Computers >Numerical investigation on the transport equation in spherical coordinates via generalized moving least squares and moving kriging least squares approximations
【24h】

Numerical investigation on the transport equation in spherical coordinates via generalized moving least squares and moving kriging least squares approximations

机译:通用移动最小二乘和移动克里格最小二乘近似的球形坐标传输方程的数值研究

获取原文
获取原文并翻译 | 示例

摘要

The main aim of this paper is to present new and simple numerical methods for solving the time-dependent transport equation on the sphere in spherical coordinates. We use two techniques, namely generalized moving least squares and moving kriging least squares to find the new formulations for approximating the advection operator in spherical coordinates such that any singularities have been omitted. Another feature of the methods considered here is that they do not depend on the background mesh or triangulation for approximation, which they could be applied on the transport equation in spherical coordinates easily with different distribution points. Furthermore, due to the eigenvalue stability of the dicretized advection operator via two proposed approximations, an implicit-explicit linear multistep method has been applied to discretize the time variable. The fully discrete scheme obtained here yields a linear system of algebraic equations at each time step, which is solved via the biconjugate gradient stabilized algorithm with zero-fill incomplete lower-upper (ILU) preconditioner. Three well-known test problems, namely "solid body rotation", "vortex roll-up" and "deformational flow" are solved to demonstrate our developments. Also for the first test problem, we apply a simple positivity-preserving filter at the end of each time step, which keeps the transported variable positive.
机译:本文的主要目的是提出新的和简单的数值方法,用于求解球形坐标中球体上的时间依赖传输方程。我们使用两种技术,即广义移动最小二乘和移动克里格最小二乘来找到用于近似于球形坐标在球形坐标中的新配方,使得已经省略了任何奇点。这里考虑的方法的另一个特征是它们不依赖于近似的背景网格或三角测量,其可以容易地应用于具有不同分布点的球形坐标中的传送方程。此外,由于通过两个提出的近似的Dicretized平行运算符的特征值稳定性,已应用隐式显式线性多步骤方法来离散时间变量。这里获得的完全离散方案在每个时间步骤产生代数方程的线性系统,其通过双缀合的梯度稳定算法通过零填充不完全的下上部(ILU)预处理器来解决。解决了三个众所周知的测试问题,即“固体旋转”,“涡旋卷起”和“变形流动”,以展示我们的发展。同样对于第一个测试问题,我们在每次步骤结束时应用一个简单的阳性保存滤波器,这使传输的变量正为正。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号