首页> 外文期刊>Engineering with Computers >A success history-based adaptive differential evolution optimized support vector regression for estimating plastic viscosity of fresh concrete
【24h】

A success history-based adaptive differential evolution optimized support vector regression for estimating plastic viscosity of fresh concrete

机译:基于历史的自适应差分演化优化支持向量回归估算新混凝土塑性粘度

获取原文
获取原文并翻译 | 示例

摘要

Plastic viscosity is an important parameter of fresh concrete mixes. This research investigates a machine learning-based method for constructing a functional mapping between concrete mix properties and the plastic viscosity. The investigated machine learning method relies on the support vector regression (SVR) which is a robust method for nonlinear and mul-tivariate function approximation. Moreover, the history-based adaptive differential evolution with linear population size reduction (L-SHADE) is employed to optimize the SVR model construction phase. Thus, the proposed method, named L-SHADE-SVR, is an integration of machine learning and metaheuristic optimization. To train and verify the L-SHADE-SVR model, a dataset consisting of 142 experimental tests was collected. Experimental results with repetitive phases of model training and testing reveal that the newly constructed model is capable of delivering highly accurate estimation of the plastic viscosity with mean absolute percentage error of 12% and coefficient of determination of 0.82. These outcomes are superior compared to the employed benchmark methods including artificial neural network, multivariate adaptive regression spline, and sequential piecewise multiple linear regression. Therefore, the L-SHADE-SVR model is a promising tool to assist construction engineers in estimating the plastic viscosity of fresh concrete mixes.
机译:塑料粘度是新混凝土混合物的重要参数。本研究研究了一种基于机器学习的方法,用于构建混凝土混合性能与塑料粘度之间的功能映射。调查的机器学习方法依赖于支持向量回归(SVR),其是非线性和多方仪函数近似的鲁棒方法。此外,采用线性群体尺寸减少(L-SHADE)的基于历史的自适应差分演化来优化SVR模型构建阶段。因此,所提出的方法,名为L-Shade-SVR,是机器学习和成群质优化的集成。要培训和验证L-SHADE-SVR模型,收集了由142个实验测试组成的数据集。模型训练和测试重复阶段的实验结果表明,新建的模型能够提供高精度估计塑料粘度,平均绝对百分比误差为12%,测定系数为0.82。与所采用的基准方法相比,这些结果与包括人工神经网络,多变量自适应回归样条和顺序分段多元线性回归的基准方法优越。因此,L-Shade-SVR模型是一种有前途的工具,可以帮助建造工程师估算新混凝土混合物的塑料粘度。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号