首页> 外文期刊>Engineering with Computers >The approximate solution of charged particle motion equations in oscillating magnetic fields using the local multiquadrics collocation method
【24h】

The approximate solution of charged particle motion equations in oscillating magnetic fields using the local multiquadrics collocation method

机译:利用局部多氖性搭配方法振荡磁场中带电粒子运动方程的近似解

获取原文
获取原文并翻译 | 示例

摘要

The charged particle motion for certain configurations of oscillating magnetic fields can be simulated by a Volterra integro-differential equation of the second order with time-periodic coefficients. This paper investigates a simple and accurate scheme for computationally solving these types of integro-differential equations. To start the method, we first reduce the integro-differential equations to equivalent Volterra integral equations of the second kind. Subsequently, the solution of the mentioned Volterra integral equations is estimated by the collocation method based on the local multiquadrics formulated on scattered points. We also expand the proposed method to solve fractional integro-differential equations including non-integer order derivatives. Since the offered method does not need any mesh generations on the solution domain, it can be recognized as a meshless method. To demonstrate the reliability and efficiency of the new technique, several illustrative examples are given. Moreover, the numerical results confirm that the method developed in the current paper in comparison with the method based on the globally supported multiquadrics has much lesser volume computing.
机译:可以通过具有时间周期性系数的二阶的Volterra积分 - 微分方程来模拟用于某些配置的振荡磁场的带电粒子运动。本文研究了一种简单准确的方案,用于计算这些类型的积分微分方程。为了开始该方法,首先将积分微分方程减少到第二类的等效Volterra积分方程。随后,通过基于在散射点上配制的局部多序列的局部多序列的搭配方法估计提到的Volterra积分方程的解决方案。我们还扩展了所提出的方法来解决包括非整数衍生物的分数积分差分方程。由于提供的方法不需要解决方案域上的任何网格生成,因此它可以被识别为无网格方法。为了证明新技术的可靠性和效率,给出了几个说明性示例。此外,数值结果证实,与基于全球支持的多序列的方法相比,当前纸张中开发的方法具有更大的量计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号