首页> 外文期刊>Engineering with Computers >Geometry simplification of open-cell porous materials for elastic deformation FEA
【24h】

Geometry simplification of open-cell porous materials for elastic deformation FEA

机译:用于弹性变形的开孔多孔材料的几何简化

获取原文
获取原文并翻译 | 示例

摘要

Estimation of mechanical properties of porous materials is central for their medical and industrial application. However, the massive size of accurate boundary representations (B-Rep) of the foams makes the numerical estimations intractable. Even for small domain sizes, the mesh generation for finite element analysis (FEA) may not terminate. Current efforts for simulating porous materials use statistical predictions of the material structure. The simulated and actual materials present different geometry and topology, with consequences on the simulation results. To overcome these limitations, this manuscript presents a method, which (1) synthesizes an accurate truss abstraction from the raw geometry data, (2) executes efficient FEA simulations, and (3) processes nodal displacements to estimate apparent mechanical moduli of the porous material. The method addresses materials whose ligaments have circular cross-sections. The iso-surface present in the Computer Tomography (CT) scan of the porous material is used to synthesize a truss graph whose edges are truncated cones. Then, optimization and simplification methods are applied to produce a topologically and geometrically correct truss representation for the foam domain. Comparative FEA load simulations are conducted between the full B-Rep and truss representations of the material. The truss model proves to be significantly more efficient for FEA, departing from the Full B-Rep FEA by a maximum of 16% in the estimation of equivalent mechanical moduli. Geometric assessments such as porosity and Hausdorff distance confirm that the truss abstraction is a cost-effective one. Ongoing efforts concentrate on point set geometric algorithms for enforcement of standardized material testing.
机译:多孔材料的机械性能评估对于其医学和工业应用至关重要。但是,泡沫的精确边界表示形式(B-Rep)的体积很大,使得数值估计难以进行。即使对于较小的域,有限元分析(FEA)的网格生成也可能不会终止。当前模拟多孔材料的努力使用了材料结构的统计预测。模拟的材料和实际的材料呈现不同的几何形状和拓扑结构,从而影响模拟结果。为了克服这些限制,该手稿提出了一种方法,该方法(1)从原始几何数据合成准确的桁架抽象,(2)执行有效的FEA模拟,并且(3)处理节点位移以估计多孔材料的表观机械模量。该方法处理韧带具有圆形横截面的材料。多孔材料的计算机断层扫描(CT)扫描中存在的等值面用于合成其边缘为圆锥台的桁架图。然后,应用优化和简化方法为泡沫域生成拓扑和几何上正确的桁架表示。在完整的B-Rep和材料桁架表示之间进行了比较FEA载荷模拟。事实证明,桁架模型对FEA的效率显着提高,在等效机械模量的估算中,与Full B-Rep FEA的最大差距为16%。诸如孔隙率和Hausdorff距离的几何评估证实了桁架抽象是一种经济有效的方法。正在进行的工作集中于用于标准材料测试的点集几何算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号