首页> 外文期刊>Engineering with Computers >Function development for appraising brittleness of intact rocks using genetic programming and non-linear multiple regression models
【24h】

Function development for appraising brittleness of intact rocks using genetic programming and non-linear multiple regression models

机译:使用遗传程序和非线性多元回归模型评估完整岩石脆性的功能开发

获取原文
获取原文并翻译 | 示例

摘要

Brittleness of rock is one of the most critical features for design of underground excavation project. Therefore, proper assessing of rock brittleness can be very useful for designers and evaluators of geotechni-cal applications. In this study, feasibility of genetic programming (GP) model and non-linear multiple regression (NLMR) in predicting brittleness of intact rocks is examined. For this purpose, a dataset developed by conducting various rock tests including uniaxial compres-sive strength, Brazilian tensile strength, unit weight and brittleness via punch penetration on rock samples gathered from 48 tunnels projects around the world is utilized herein. Considering multiple inputs, several GP models were constructed to estimate brittleness index of the rock and finally, the best GP model was selected. Note that, GP can make an equation for predicting output of the system using model inputs. To show applicability of the developed GP model, non-linear multiple regression (NLMR) was also applied and developed. Considering some model performance indices, performance prediction of the GP and NLMR models were evaluated and it was found that the GP model is superior to NLMR one. Based on coefficient of determination (R2) of testing datasets, by proposing GP model, it can be improved from 0.882 (obtained by NLMR model) to 0.904. It is worth mentioning that the proposed predictive models in this study should be planned and used for the similar types of rock and the established inputs ranges.
机译:岩石的脆性是地下基坑工程设计的最关键特征之一。因此,对岩石脆性的正确评估对于岩土工程应用的设计人员和评估人员非常有用。在这项研究中,检验了遗传规划(GP)模型和非线性多元回归(NLMR)预测完整岩石脆性的可行性。为此,本文利用通过对包括从世界各地的48个隧道项目采集的岩石样本进行冲孔渗透而进行的各种岩石测试(包括单轴抗压强度,巴西抗拉强度,单位重量和脆性)而开发的数据集。考虑到多个输入,构造了几个GP模型来估计岩石的脆性指数,最后,选择了最佳的GP模型。注意,GP可以使用模型输入生成方程式,以预测系统的输出。为了显示开发的GP模型的适用性,还应用和开发了非线性多元回归(NLMR)。考虑到一些模型性能指标,评估了GP和NLMR模型的性能预测,发现GP模型优于NLMR模型。根据测试数据集的确定系数(R2),通过提出GP模型,可以将其从0.882(由NLMR模型获得)提高到0.904。值得一提的是,本研究中建议的预测模型应进行规划,并用于相似类型的岩石和已建立的输入范围。

著录项

  • 来源
    《Engineering with Computers》 |2017年第1期|13-21|共9页
  • 作者单位

    Faculty of Science and Technology, Federation University Australia, PO Box 663, Ballarat, VIC 3353, Australia;

    Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran;

    Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143 Tehran, Iran;

    Young Researchers and Elite Club, Qaemshahr Branch,Islamic Azad University, Qaemshahr, Iran;

    UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia,81310 Skudai, Johor, Malaysia;

    Department of Geological Engineering, Faculty of Engineering, Pamukkale University, 20017 Denizli,Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Brittleness; Genetic programming; Non-linear multiple regression;

    机译:脆性;基因编程;非线性多元回归;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号