首页> 外文期刊>Engineering Structures >Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity
【24h】

Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity

机译:结合神经网络技术的基于阻抗的结构健康监测,以识别损坏的类型和严重程度

获取原文
获取原文并翻译 | 示例

摘要

Impedance-based structural health monitoring (SHM) has come to the forefront in the SHM community because of its practical potential for real applications. In the impedance-based SHM technique, it is very important to select the optimal frequency range most sensitive to the expected structural damage, and more quantitative information on the structural damages might be needed compared to the conventional damage index. Therefore, this study proposes an innovative neural network (NN)-based pattern analysis tool (1) to identify damage-sensitive frequency ranges autonomously and (2) to provide detailed information such as the damage type and severity. The importance of selecting the optimal frequency range was first investigated experimentally using a simply-supported aluminum beam. The performance of the proposed NN-based approach was validated throughout damage identifications of loose bolts and notches on a bolt-jointed aluminum beam and a lab-scale pipe structure. Finally, the proposed NN-based algorithm was embedded into a wireless impedance sensor node to detect real damage in a full-scale bridge. Overall, the proposed approach incorporating a wireless impedance sensor node was used to evaluate the damage type and severity in multi-type and multiple structural damage cases.
机译:基于阻抗的结构健康监测(SHM)由于其在实际应用中的实际潜力,已成为SHM社区中的最前沿。在基于阻抗的SHM技术中,选择对预期的结构损伤最敏感的最佳频率范围非常重要,与常规损伤指数相比,可能需要更多有关结构损伤的定量信息。因此,本研究提出了一种创新的基于神经网络(NN)的模式分析工具(1)来自动识别对损伤敏感的频率范围,以及(2)提供详细的信息,例如损伤类型和严重性。首先,通过简单支撑的铝梁通过实验研究了选择最佳频率范围的重要性。通过基于螺栓连接的铝梁和实验室规模的管道结构上的松散螺栓和缺口的损坏识别,验证了所提出的基于NN的方法的性能。最后,将所提出的基于神经网络的算法嵌入到无线阻抗传感器节点中,以检测全尺寸桥梁中的实际损坏。总体而言,所提出的方法结合了无线阻抗传感器节点,可用于评估多种类型和多种结构损坏情况下的损坏类型和严重程度。

著录项

  • 来源
    《Engineering Structures》 |2012年第6期|p.210-220|共11页
  • 作者单位

    Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea;

    Department of Civil and Environmental Engineering, Sungkyunkwan University, Suwon, Cyeonggi 440-746, South Korea;

    Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea;

    Infrastructure Research Division, Expressway & Transportation Research Institute, Hwasung, Cyeonggi 445-812, South Korea;

    Department of Civil and Environmental Engineering, Sungkyunkwan University, Suwon, Cyeonggi 440-746, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    piezoelectric sensors; electromechanical impedance; damage identification; neural network; frequency range selection;

    机译:压电传感器机电阻抗;损坏识别;神经网络;频率范围选择;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号