首页> 外文期刊>Engineering Structures >Dynamic finite element formulations for moderately thick plate vibrations based on the modified Mindlin theory
【24h】

Dynamic finite element formulations for moderately thick plate vibrations based on the modified Mindlin theory

机译:基于改进的Mindlin理论的中厚板振动的动态有限元公式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the modified Mindlin theory is used for the construction of the dynamic stiffness matrix, the flexibility matrix, and the transfer matrix of a thick plate simply supported at two opposite edges. The modified Mindlin theory operates with bending deflection as the basic variable for the determination of the total (bending + shear) deflection and the angles of rotation. It is shown that the appropriate application of the constructed matrices to various boundary conditions leads to a determined formulation of the eigenvalue problem. As a result, the problem can be treated using ordinary algorithms for linear eigenvalue problems. Therefore the application of the relatively complex Wittrick-Williams algorithm, developed for the transcendental eigenvalue problems with the unusual forms of non-zero determinant is avoided. Using this technique, dynamic finite elements can be obtained in a simpler form than that based on the application of the conventional Mindlin theory. All phenomena related to the dynamic finite element application are investigated in the case of an axial bar vibration in a transparent analytical way. Furthermore, the application of the developed thick plate elements is illustrated through several numerical examples. Examples include using single elements as well as an assembly of elements. In the examples of single elements transcendental eigenfunctions are derived. Also a dynamic beam finite element is considered as a special case of the plate finite strip which exhibits no variation in the transverse direction. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,修改后的Mindlin理论用于构造刚度支撑在两个相对边缘的厚板的动态刚度矩阵,柔韧性矩阵和传递矩阵。修改后的Mindlin理论将弯曲挠度作为基本变量,用于确定总(弯曲+剪切)挠度和旋转角度。结果表明,将构造的矩阵适当地应用于各种边界条件会导致确定特征值问题。结果,可以使用用于线性特征值问题的普通算法来解决该问题。因此,避免了针对具有非零行列式非常规形式的先验特征值问题开发的相对复杂的Wittrick-Williams算法的应用。使用这种技术,可以得到比基于传统Mindlin理论的应用更简单的形式的动态有限元。在轴向杆振动的情况下,以透明的分析方式研究了与动态有限元应用相关的所有现象。此外,通过几个数值示例说明了开发的厚板元件的应用。示例包括使用单个元素以及元素集合。在单个元素的例子中,先验本征函数被导出。动态梁有限元也被认为是板有限条的一种特例,其在横向上没有变化。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号