首页> 外文期刊>Engineering Structures >Application of operational method to develop dynamic stiffness matrix for vibration analysis of thin beams
【24h】

Application of operational method to develop dynamic stiffness matrix for vibration analysis of thin beams

机译:操作方法在薄梁振动分析中发育动态刚度矩阵的应用

获取原文
获取原文并翻译 | 示例

摘要

Laplace transform operator only accepts initial values at zero in evaluating derivative functions. This limits its use in vibration analysis of beams as a tool for merely finding analytical solutions and coefficients. By extending Laplace transform's capacity to take non-zero initial conditions, a novel operational method for developing dynamic beam elements is proposed. The method avoids integration and differentiation, which are traditionally used in developing dynamic vibration elements. The ease of application of this operational method is demonstrated by developing dynamic stiffness elements of Euler-Bernoulli beams under various boundary conditions. The proposed technique also allows for easy handling of coupled differential equations, such as the ones applied to bending-torsion vibration of beams, as well as discontinuous functions which appear in elastic support modelling. MATLAB (R) software has been used as graphing tool and for the mathematical calculations in this research.
机译:拉普拉斯变换操作员仅在评估衍生功能时接受零的初始值。这限制了其在梁的振动分析中用作仅用于发现分析解决方案和系数的工具。通过扩展拉普拉斯变换的容量来采用非零初始条件,提出了一种用于开发动态梁元件的新型操作方法。该方法避免集成和分化,其传统上用于开发动态振动元件。通过在各种边界条件下开发Euler-Bernoulli光束的动态刚度元件来证明该操作方法的应用。所提出的技术还允许易于处理耦合的微分方程,例如应用于梁的弯曲扭转振动的耦合差分方程,以及出现在弹性支持造型中的不连续功能。 MATLAB(R)软件已被用作图形工具和本研究中的数学计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号