首页> 外文期刊>Engineering Structures >Non-probabilistic method to consider uncertainties in structural damage identification based on Hybrid Jaya and Tree Seeds Algorithm
【24h】

Non-probabilistic method to consider uncertainties in structural damage identification based on Hybrid Jaya and Tree Seeds Algorithm

机译:基于杂交Jaya和树种算法的结构损伤识别不确定性的非概率方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel non-probabilistic structural damage identification approach by developing a hybrid swarm intelligence technique based on Jaya and Tree Seeds Algorithm (TSA), taking into account the high-level uncertainties in the measurements and finite element modelling. The damage in structure is simulated as re-duction of elemental stiffness, and structural damage identification is formulated as an optimization problem. To overcome the challenge for structural damage identification with a limited number of measurement data, an objective function based on the modal data and sparse regularization technique is defined. To make the opti-mization algorithm more powerful and robust, a hybridization of the K-means clustering based Jaya and TSA is proposed. Jaya algorithm is taken as the core in the hybridization. The clustering strategy is employed to replace solutions with low-quality objective values in the Jaya algorithm. Then the search strategy of the TSA is in-troduced into the best-so-far solution of each cycle. The proposed hybridization algorithm is termed as " C-Jaya-TSA". To enhance the capacity of the proposed algorithm to consider uncertainties, a non-probabilistic method is also integrated to calculate the interval bound (lower and upper bounds) of the elemental stiffness changes by using the interval analysis method. To better quantify the structural damage extents, Damage Measure Index (DMI) values are introduced for representing structural damage states. The DMI value can be viewed as a combination of deterministic stiffness reduction and the Possibility of Damage Existence (PoDE). Numerical benchmark functions, numerical studies and experimental investigations are conducted to verify the accuracy and performance of the proposed method. The identification results show that the developed C-Jaya-TSA in-tegrated with the non-probabilistic interval analysis method is a promising tool to accurately identify the structural damage, even high-level uncertainties exist.
机译:本文提出了一种基于Jaya和树种子算法(TSA)的混合群智能技术,提出了一种新的非概率结构损伤识别方法,考虑到测量和有限元建模中的高水平不确定性。结构损坏被模拟为重量刚度的重新延长,并且结构损伤识别被制定为优化问题。为了克服具有有限数量的测量数据的结构损伤识别的挑战,定义了基于模态数据和稀疏正则化技术的目标函数。为了使Opti-Mization算法更强大且坚固,提出了基于K-Means聚类的Jaya和TSA的杂交。 Jaya算法作为杂交中的核心。聚类策略用于替换Jaya算法中具有低质量客观值的解决方案。然后,TSA的搜索策略被送入每个周期的最佳解决方案。所提出的杂交算法称为“C-Jaya-TSA”。为了提高所提出的算法考虑不确定性的容量,还集成了非概率方法以通过使用间隔分析方法计算元素刚度变化的间隔边界(下限和上限)。为了更好地量化结构损伤范围,引入损伤测量指数(DMI)值以表示结构损伤状态。可以将DMI值视为确定性刚度降低的组合和损坏存在的可能性(PODE)。进行数值基准功能,进行数值研究和实验研究,以验证所提出的方法的准确性和性能。鉴定结果表明,与非概率间隔分析方法的开发的C-Jaya-TSA是一种有前途的工具,可以准确地识别结构损伤,即使存在高水平的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号