首页> 外文期刊>IEEE Transactions on Engineering Management >A Pareto-Archived Estimation-of-Distribution Algorithm for Multiobjective Resource-Constrained Project Scheduling Problem
【24h】

A Pareto-Archived Estimation-of-Distribution Algorithm for Multiobjective Resource-Constrained Project Scheduling Problem

机译:多目标资源受限项目调度问题的帕累托归档分布估计算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a Pareto-archived estimation-of-distribution algorithm (PAEDA) is presented for the multiobjective resource-constrained project scheduling problem with makespan and resource investment criteria. First, by combining the activity list and the resource list, an encoding scheme named activity-resource list is presented. Second, a novel hybrid probability model is designed to predict the most promising activity permutation and resource capacities. Third, a new sampling and updating mechanism for the probability model is developed to track the area with promising solutions. In addition, a Pareto archive is used to store the nondominated solutions that have been explored, and another archive is used to store the solutions for updating the probability model. The evolution process of the PAEDA is visualized showing the most promising area of the search space is tracked. Extensive numerical testing results then demonstrate that the PAEDA outperforms the existing methods.
机译:本文针对具有制造期和资源投入标准的多目标资源受限项目调度问题,提出了一种帕累托归档分布估计算法(PAEDA)。首先,通过组合活动列表和资源列表,提出了一种名为活动-资源列表的编码方案。其次,设计了一种新颖的混合概率模型来预测最有前途的活动排列和资源容量。第三,开发了一种新的概率模型采样和更新机制,以用有希望的解决方案跟踪该区域。此外,Pareto存档用于存储已探索的非支配解,另一个存档用于存储解决方案以更新概率模型。 PAEDA的演变过程可视化,显示了跟踪搜索空间最有希望的区域。大量的数值测试结果表明,PAEDA的性能优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号