首页> 外文期刊>Engineering Computations >Use of adaptive neuro-fuzzy inference system and gene expression programming methods for estimation of the bearing capacity of rock foundations
【24h】

Use of adaptive neuro-fuzzy inference system and gene expression programming methods for estimation of the bearing capacity of rock foundations

机译:自适应神经模糊推理系统和基因表达程序设计方法在岩石基础承载力估算中的应用

获取原文
获取原文并翻译 | 示例

摘要

Purpose This study aims to examine the potential of two artificial intelligence (AI)-based algorithms, namely, adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP), for indirect estimation of the ultimate bearing capacity (q(ult)) of rock foundations, which is a considerable civil and geotechnical engineering problem.Design/methodology/approach The input-processing-output procedures taking place in ANFIS and GEP are represented for developing predictive models. The great importance of simultaneously considering both qualitative and quantitative parameters for indirect estimation of q(ult) is taken into account and explained. This issue can be considered as a remarkable merit of using AI-based approaches. Furthermore, the evaluation procedure of various models from both engineering and accuracy viewpoints is also demonstrated in this study.Findings A new and explicit formula generated by GEP is proposed for the estimation of the q(ult) of rock foundations, which can be used for further engineering aims. It is also presented that although the ANFIS approach can predict the output with a high degree of accuracy, the obtained model might be a black-box. The results of model performance analyses confirm that ANFIS and GEP can be used as alternative and useful approaches over previous methods for modeling and prediction problems.Originality/value The superiorities and weaknesses of GEP and ANFIS techniques for the numerical analysis of engineering problems are expressed and the performance of their obtained models is compared to those provided by other approaches in the literature. The findings of this research provide the researchers with a better insight to using AI techniques for resolving complicated problems.
机译:目的这项研究旨在检验两种基于人工智能(AI)的算法的潜力,即自适应神经模糊推理系统(ANFIS)和基因表达编程(GEP),用于间接估算极限承载力(q(ult ))岩石基础,这是一个相当大的土木和岩土工程问题。设计/方法/方法代表了ANFIS和GEP中发生的输入-处理-输出程序,用于开发预测模型。考虑并解释了同时考虑定性和定量参数以间接估计q(ult)的重要性。该问题可以被视为使用基于AI的方法的显着优点。此外,本文还从工程和精度两个角度演示了各种模型的评估程序。研究结果提出了一种由GEP生成的新的显式公式,用于估算岩石基础的q(ult),可用于进一步的工程目标。还提出,尽管ANFIS方法可以高度准确地预测输出,但是获得的模型可能是黑盒。模型性能分析的结果证实,与以前的建模和预测问题方法相比,ANFIS和GEP可以作为替代和有用的方法。原创性/价值GEP和ANFIS技术在工程问题数值分析中的优缺点被表达和他们获得的模型的性能与文献中其他方法所提供的模型进行了比较。这项研究的发现为研究人员提供了使用AI技术解决复杂问题的更好的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号