首页> 外文期刊>Engineering Computations >Using ensemble Kalman filter to determine parameters for computational crowd dynamics simulations
【24h】

Using ensemble Kalman filter to determine parameters for computational crowd dynamics simulations

机译:使用集合卡尔曼滤波器确定用于人群动态仿真的参数

获取原文
获取原文并翻译 | 示例

摘要

Purpose It is of paramount importance to ensure safe and fast evacuation routes in cities in case of natural disasters, environmental accidents or acts of terrorism. The same applies to large-scale events such as concerts, sport events and religious pilgrimages as airports and to traffic hubs such as airports and train stations. The prediction of pedestrian is notoriously difficult because it varies depending on circumstances (age group, cultural characteristics, etc.). In this study, the Ensemble Kalman Filter (EnKF) data assimilation technique, which uses the updated observation data to improve the accuracy of the simulation, was applied to improve the accuracy of numerical simulations of pedestrian flow.
机译:目的在自然灾害,环境事故或恐怖主义行为发生时,确保城市中安全,快速的疏散路线至关重要。这同样适用于音乐会,体育赛事和宗教朝圣等大型活动,如机场以及交通枢纽,如机场和火车站。步行者的预测非常困难,因为它会根据情况(年龄组,文化特征等)而变化。在这项研究中,采用了集成卡尔曼滤波(EnKF)数据同化技术,该技术利用更新的观测数据来提高模拟的准确性,从而提高了行人流数值模拟的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号