首页> 外文期刊>Engineering Computations >A novel approximation method for multivariate data partitioning Fluctuation free integration based HDMR
【24h】

A novel approximation method for multivariate data partitioning Fluctuation free integration based HDMR

机译:基于HDMR的多元数据分割的一种新的近似方法。

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The plain High Dimensional Model Representation (HDMR) method needs Dirac delta type weights to partition the given multivariate data set for modelling an interpolation problem. Dirac delta type weight imposes a different importance level to each node of this set during the partitioning procedure which directly effects the performance of HDMR. The purpose of this paper is to develop a new method by using fluctuation free integration and HDMR methods to obtain optimized weight factors needed for identifying these importance levels for the multivariate data partitioning and modelling procedure. Design/methodology/approach - A common problem in multivariate interpolation problems where the sought function values are given at the nodes of a rectangular prismatic grid is to determine an analytical structure for the function under consideration. As the multivariance of an interpolation problem increases, incompletenesses appear in standard numerical methods and memory limitations in computer-based applications. To overcome the multivariance problems, it is better to deal with less-variate structures. HDMR methods which are based on divide-and-conquer philosophy can be used for this purpose. This corresponds to multivariate data partitioning in which at most univariate components of the Plain HDMR are taken into consideration. To obtain these components there exist a number of integrals to be evaluated and the Fluctuation Free Integration method is used to obtain the results of these integrals. This new form of HDMR integrated with Fluctuation Free Integration also allows the Dirac delta type weight usage in multivariate data partitioning to be discarded and to optimize the weight factors corresponding to the importance level of each node of the given set. Findings - The method developed in this study is applied to the six numerical examples in which there exist different structures and very encouraging results were obtained. In addition, the new method is compared with the other methods which include Dirac delta type weight function and the obtained results are given in the numerical implementations section. Originality/value - The authors' new method allows an optimized weight structure in modelling to be determined in the given problem, instead of imposing the use of a certain weight function such as Dirac delta type weight. This allows the HDMR philosophy to have the chance of a flexible weight utilization in multivariate data modelling problems.
机译:目的-普通的高维模型表示(HDMR)方法需要Dirac delta类型权重来划分给定的多元数据集,以对插值问题进行建模。 Dirac delta类型权重在分区过程中对该集合的每个节点施加了不同的重要性级别,这直接影响HDMR的性能。本文的目的是通过使用无波动积分和HDMR方法来开发一种新方法,以获得用于确定多元数据划分和建模过程的这些重要程度所需的优化权重因子。设计/方法/方法-多元插值问题中的一个普遍问题是确定所考虑函数的解析结构,其中在矩形棱柱网格的节点处提供了所寻求的函数值。随着插值问题的多方性增加,在基于计算机的应用程序中,标准的数值方法和内存限制会出现不完整性。为了克服多方差问题,最好处理较少变化的结构。基于分治法原理的HDMR方法可用于此目的。这对应于多变量数据分区,其中最多考虑了平原HDMR的单变量成分。为了获得这些分量,存在许多要评估的积分,并且使用无波动积分法来获得这些积分的结果。与无波动集成集成的这种新形式的HDMR还允许丢弃多变量数据分区中的Dirac delta类型权重使用,并优化与给定集合的每个节点的重要性级别相对应的权重因子。研究结果-本研究开发的方法适用于六个数值示例,其中存在不同的结构,并且获得了非常令人鼓舞的结果。此外,将该新方法与其他方法(包括狄拉克三角洲类型权函数)进行了比较,并在数值实现部分给出了获得的结果。原创性/价值-作者的新方法允许在给定问题中确定优化的建模权重结构,而不是强加使用某些权重函数(例如Dirac delta型权重)。这使HDMR原理可以在多变量数据建模问题中灵活利用权重。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号