首页> 外文期刊>Engineering Applications of Artificial Intelligence >Multilayer perceptron as inverse model in a ground-based remote sensing temperature retrieval problem
【24h】

Multilayer perceptron as inverse model in a ground-based remote sensing temperature retrieval problem

机译:多层感知器作为地面遥感温度反演问题的逆模型

获取原文

摘要

In this paper, a combustion temperature retrieval approximation for high-resolution infrared ground-based measurements has been developed based on a multilayer perceptron (MLP) technique. The introduction of a selection subset of features is mandatory due to the problems related to the high dimensionality data and the worse performance of MLPs with this high input dimensionality. Principal component analysis is used to reduce the input data dimensionality, selecting the physically important features in order to improve MLP performance. The use of a priori physical information over other methods in the chosen feature's phase has been tested and has appeared jointly with the MLP technique as a good alternative for this problem.
机译:在本文中,基于多层感知器(MLP)技术开发了用于高分辨率红外地面测量的燃烧温度检索近似值。由于与高维数据有关的问题以及具有这种高输入维数的MLP的性能较差,因此必须引入特征的选择子集。主成分分析用于减少输入数据的维数,选择物理上重要的特征以提高MLP性能。已经测试了在选定特征阶段使用先验物理信息而不是其他方法的先验物理信息,并且与MLP技术一起出现,可以很好地替代此问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号