首页> 外文期刊>Engineering Applications of Artificial Intelligence >Speaker diarization using autoassociative neural networks
【24h】

Speaker diarization using autoassociative neural networks

机译:使用自联想神经网络进行说话人区分

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses a new approach to speaker diarization using autoassociative neural networks (AANN). The speaker diarization task consists of segmenting a conversation into homogeneous segments which are then clustered into speaker classes. The proposed method uses AANN models to capture the speaker specific information from mel frequency cepstral coefficients (MFCC). The distribution capturing ability of the AANN model is utilized for segmenting the conversation and grouping each segment into one of the speaker classes. The algorithm has been tested on different databases, and the results are compared with the existing algorithms. The experimental results show that the proposed approach competes with the standard speaker diarization methods reported in the literature and it is an alternative method to the existing speaker diarization methods.
机译:本文提出了一种使用自动联想神经网络(AANN)进行说话人区分的新方法。说话人区分任务包括将对话分成同构片段,然后将其聚类为说话者类别。所提出的方法使用AANN模型从梅尔频率倒谱系数(MFCC)捕获说话者特定信息。 AANN模型的分布捕获能力用于对会话进行分段并将每个分段分组为一个说话者类别。该算法已在不同的数据库上进行了测试,并将结果与​​现有算法进行了比较。实验结果表明,该方法可与文献报道的标准说话人二分法相媲美,是现有说话人二分法的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号