首页> 外文期刊>Engineering Applications of Artificial Intelligence >Fabric Defect Detection Based On Multiple Fractal Features And Support Vector Data Description
【24h】

Fabric Defect Detection Based On Multiple Fractal Features And Support Vector Data Description

机译:基于多个分形特征和支持向量数据描述的织物疵点检测

获取原文
获取原文并翻译 | 示例

摘要

Computer-vision-based automatic detection of fabric defects is one of the difficult one-class classification tasks in the real world. To overcome the incapacity of a single fractal feature in dealing with this task, multiple fractal features have been extracted in the light of the theory of and problems present in the box-counting method as well as the inherent characteristics of woven fabrics. Based on statistical learning theory, the up-to-date support vector data description (SVDD) is an excellent approach to the problem of one-class classification. A robust new scheme is presented in this paper for optimally selecting values of the parameters especially that of the scale parameter of the Gaussian kernel function involved in the training of the SVDD model. Satisfactory experimental results are finally achieved by jointly applying the extracted multiple fractal features and SVDD to the detection of defects from several datasets of fabric samples with different texture backgrounds.
机译:基于计算机视觉的织物缺陷自动检测是现实世界中困难的一类分类任务之一。为了克服单个分形特征在处理该任务中的能力不足,根据盒计数方法的理论和存在的问题以及机织物的固有特性,提取了多个分形特征。基于统计学习理论,最新的支持向量数据描述(SVDD)是解决一类分类问题的绝佳方法。本文提出了一种鲁棒的新方案,用于优化选择参数值,特别是参与SVDD模型训练的高斯核函数的尺度参数值。通过将提取的多个分形特征和SVDD联合应用于从具有不同纹理背景的织物样本的多个数据集中检测缺陷,最终获得了令人满意的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号