首页> 外文期刊>Engineering Applications of Artificial Intelligence >Application and comparison of computational intelligence techniques for optimal location and parameter setting of UPFC
【24h】

Application and comparison of computational intelligence techniques for optimal location and parameter setting of UPFC

机译:计算智能技术在UPFC最佳位置和参数设置中的应用和比较

获取原文
获取原文并翻译 | 示例

摘要

Unified power flow controller (UPFC) is one of the most effective flexible AC transmission systems (FACTS) devices for enhancing power system security. However, to what extent the performance of UPFC can be brought out, it highly depends upon the location and parameter setting of this device in the system. This paper presents a new approach based on computational intelligence (CI) techniques to find out the optimal placement and parameter setting of UPFC for enhancing power system security under single line contingencies (N-1 contingency). Firstly, a contingency analysis and ranking process to determine the most severe line outage contingencies, considering lines overload and bus voltage limit violations as a performance index, is performed. Secondly, a relatively new evolutionary optimization technique, namely: differential evolution (DE) technique is applied to find out the optimal location and parameter setting of UPFC under the determined contingency scenarios. To verify our proposed approach and for comparison purposes, simulations are performed on an IEEE 14-bus and an IEEE 30-bus power systems. The results, we have obtained, indicate that DE is an easy to use, fast, robust and powerful optimization technique compared with genetic algorithm (GA) and particle swarm optimization (PSO). Installing UPFC in the optimal location determined by DE can significantly enhance the security of power system by eliminating or minimizing the number of overloaded lines and the bus voltage limit violations.
机译:统一潮流控制器(UPFC)是用于增强电力系统安全性的最有效的灵活交流输电系统(FACTS)设备之一。但是,UPFC的性能可在多大程度上发挥,这在很大程度上取决于该设备在系统中的位置和参数设置。本文提出了一种基于计算智能(CI)技术的新方法,以找出UPFC的最佳放置和参数设置,以增强单线意外情况下(N-1偶然性)的电力系统安全性。首先,进行应急分析和排序过程,以确定最严重的线路中断突发事件,并将线路过载和违反母线电压限值的情况作为性能指标。其次,采用了一种相对较新的进化优化技术,即差分进化(DE)技术,以在确定的突发情况下找出UPFC的最优位置和参数设置。为了验证我们提出的方法并进行比较,在IEEE 14总线和IEEE 30总线电源系统上进行了仿真。我们获得的结果表明,与遗传算法(GA)和粒子群优化(PSO)相比,DE是一种易于使用,快速,强大且功能强大的优化技术。在由DE确定的最佳位置安装UPFC,可以消除或最小化过载线路的数量和违反总线电压限制的规定,从而显着提高电力系统的安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号