首页> 外文期刊>Engineering Applications of Artificial Intelligence >Genetic algorithms for feature selection of image analysis-based quality monitoring model: An application to an iron mine
【24h】

Genetic algorithms for feature selection of image analysis-based quality monitoring model: An application to an iron mine

机译:基于图像分析的质量监控模型特征选择的遗传算法:在铁矿上的应用

获取原文
获取原文并翻译 | 示例

摘要

Measuring the quality parameters of materials at mines is difficult and a costly job. In this paper, an image analysis-based method is proposed efficiently and cost effectively that determines the quality parameters of material. The image features are extracted from the samples collected from a mine and modeled using neural networks against the actual grade values of the samples generated by chemical analysis. The dimensions of the image features are reduced by applying the genetic algorithm. The results showed that only 39 features out of 189 features are sufficient to model the quality parameter. The model was tested with the testing data set and the result revealed that the estimated grade values are in good agreement with the real grade values (R~2=0.77). The developed method was then applied to a case study mine of iron ore. The case study results show that proposed image-based algorithm can be a good alternative for estimating quality parameters of materials at a mine site. The effectiveness of the proposed method was verified by applying it on a limestone deposit and the results revealed that the method performed equally well for the limestone deposit.
机译:在矿山中测量材料的质量参数是困难且昂贵的工作。本文提出了一种基于图像分析的有效而经济的方法,该方法确定了材料的质量参数。从矿山采集的样本中提取图像特征,并使用神经网络对化学分析生成的样本的实际等级值进行建模。通过应用遗传算法可以减小图像特征的尺寸。结果表明,在189个特征中只有39个特征足以对质量参数进行建模。用测试数据集对模型进行测试,结果表明估计的等级值与真实等级值非常吻合(R〜2 = 0.77)。然后将开发的方法应用于案例研究铁矿石。案例研究结果表明,提出的基于图像的算法可以很好地替代估算矿场材料质量参数的方法。通过将其应用于石灰岩矿床,验证了所提方法的有效性,结果表明该方法对石灰岩矿床的性能同样良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号