首页> 外文期刊>Engineering Applications of Artificial Intelligence >Evolution-enhanced multiscale overcomplete dictionaries learning for image denoising
【24h】

Evolution-enhanced multiscale overcomplete dictionaries learning for image denoising

机译:用于图像去噪的进化增强型多尺度超完备字典学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a multiscale overcomplete dictionary learning approach is proposed for image denoising by exploiting the multiscale property and sparse representation of images. The images are firstly sparsely represented by a translation invariant dictionary and then the coefficients are denoised using some learned multiscale dictionaries. Dictionaries learning can be reduced to a non-convex l_0-norm minimization problem with multiple variables, so an evolution-enhanced algorithm is proposed to alternately optimize the variables. Some experiments are taken on comparing the performance of our proposed method with its counterparts on some benchmark natural images, and the superiorities of our proposed method to its counterparts can be observed in both the visual result and some numerical guidelines.
机译:本文提出了一种利用图像的多尺度特性和稀疏表示的多尺度超完备字典学习方法。首先用平移不变字典稀疏地表示图像,然后使用一些学习过的多尺度字典对系数进行去噪。字典学习可以简化为具有多个变量的非凸l_0范数最小化问题,因此提出了一种进化增强算法来交替优化变量。进行了一些实验,以比较我们提出的方法与相应方法在某些基准自然图像上的性能,并且在视觉结果和一些数值准则上都可以观察到我们提出的方法相对于相应方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号