首页> 外文期刊>Engineering Applications of Artificial Intelligence >IMS 10-Validation of a co-evolving diagnostic algorithm for evolvable production systems
【24h】

IMS 10-Validation of a co-evolving diagnostic algorithm for evolvable production systems

机译:IMS 10-用于可进化生产系统的共同进化诊断算法的验证

获取原文
获取原文并翻译 | 示例

摘要

With the systematic implantation and acceptance of IT in the shop-floor a wide range of production paradigms, relying in open interoperable architectures, have been developed. Exploring these technological novelties, they promise to revolutionize the way current plant floors operate and react to emerging opportunities and disturbances. There is a high interest of module providers in the adoption of these open mechatronic architectures as they may provide a new business model where the automation solution can be easily tailored for each customer in due time and ships with a significant part of the control solution (high added value). Final customers on their side can contract operating hours rather than buying modules. Moreover, the automation solution can be swiftly modified to meet changing requirements. The necessary increase in the number of distributed and autonomous components that interact in the execution of processes implies that new diagnostic approaches should be developed to tackle the network layer of these highly dynamic systems. In fact fault propagation events can be harder to understand and can affect the system in unpredictable and pervasive ways. Following this rationale the paper presents a potential diagnostic solution that targets multiagent-based mechatronic systems where their components are highly decoupled from a control point of view. The diagnostic architecture presented tackles the problem of fault propagation while preserving the decoupled nature of the Mechatronic Agent concept. In this context the diagnostic system explores self-organization to enact an emergent response that denotes macro-level coherence. The system's response is the result of an individual probabilistic diagnostic inference based on Hidden Markov Models that capture the propagating nature of a failure. The validation results of the proposed diagnostic approach are detailed for the system's response in simulation (highlighting the main variables that affect the performance of the system) and compared to the system applied to a pilot assembly cell. The simulation model and the performance metrics considered are detailed and discussed along with the main implementation details.
机译:随着IT在车间中的系统植入和接受,已经开发了广泛的生产范例,这些范例依赖于开放的可互操作架构。通过探索这些技术新颖性,他们承诺将改变当前工厂车间的运作方式,并对新出现的机会和干扰做出反应。模块供应商对采用这些开放式机电一体化体系结构非常感兴趣,因为它们可以提供一种新的业务模型,在该模型中,可以轻松地在适当的时候为每个客户量身定制自动化解决方案,并附带很大一部分控制解决方案(高附加价值)。最终客户站在他们这边可以签定营业时间,而不是购买模块。而且,可以快速修改自动化解决方案以满足不断变化的需求。在执行过程中相互作用的分布式和自治组件的数量必要增加,这意味着应该开发新的诊断方法来解决这些高度动态系统的网络层。实际上,故障传播事件可能更难以理解,并且可能以不可预测且普遍的方式影响系统。根据这个原理,本文提出了一种潜在的诊断解决方案,该解决方案针对基于多代理的机电系统,在这些系统中,从控制角度出发,其组件高度分离。提出的诊断体系结构解决了故障传播问题,同时保留了机电一体化代理概念的分离特性。在这种情况下,诊断系统将探索自我组织以制定表示宏观水平连贯性的紧急响应。系统的响应是基于隐马尔可夫模型的单个概率诊断推断的结果,该隐含马尔可夫模型捕获了故障的传播性质。对于系统在仿真中的响应(突出显示影响系统性能的主要变量),将详细介绍所提出的诊断方法的验证结果,并将其与应用于试点装配单元的系统进行比较。详细讨论了仿真模型和考虑的性能指标以及主要的实现细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号