首页> 外文期刊>Engineering Applications of Artificial Intelligence >An evolutionary algorithm approach to generate distinct sets of non-dominated solutions for wicked problems
【24h】

An evolutionary algorithm approach to generate distinct sets of non-dominated solutions for wicked problems

机译:一种进化算法方法,用于针对邪恶问题生成不同的非支配解集

获取原文
获取原文并翻译 | 示例

摘要

Many engineering design problems must optimize multiple objectives. While many objectives are explicit and can be mathematically modeled, some goals are subjective and cannot be included in a mathematical model of the optimization problem. A set of alternative non-dominated fronts that represent multiple optima for problem solution can be identified to provide insight about the decision space and to provide options and alternatives for decision-making. This paper presents a new algorithm, the Multi-objective Niching Co-evolutionary Algorithm (MNCA) that identifies distinct sets of non-dominated solutions which are maximally different in their decision vectors and are located in the same non-inferior regions of a Pareto front MNCA is demonstrated to identify a set of non-dominated fronts with maximum difference in decision vectors for a set of real-valued problems.
机译:许多工程设计问题必须优化多个目标。尽管许多目标是明确的并且可以数学建模,但是某些目标是主观的,不能包含在优化问题的数学模型中。可以识别出一组代表问题解决方案的最佳选择的非支配前沿,以提供有关决策空间的见解,并为决策提供选择和替代方案。本文提出了一种新的算法,即多目标Niching协同进化算法(MNCA),该算法可识别不同的非支配解集,它们的决策向量最大不同,并且位于帕累托锋的相同非劣域中证明MNCA可以识别一组非支配前沿,并且在一组实值问题的决策向量中具有最大差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号