首页> 外文期刊>Engineering Applications of Artificial Intelligence >Performance evaluation of artificial intelligence algorithms for virtual network embedding
【24h】

Performance evaluation of artificial intelligence algorithms for virtual network embedding

机译:用于虚拟网络嵌入的人工智能算法的性能评估

获取原文
获取原文并翻译 | 示例

摘要

Network virtualization is not only regarded as a promising technology to create an ecosystem for cloud computing applications, but also considered a promising technology for the future Internet. One of the most important issues in network virtualization is the virtual network embedding (VNE) problem, which deals with the embedding of virtual network (VN) requests in an underlying physical (substrate network) infrastructure. When both the node and link constraints are considered, the VN embedding problem is NP-hard, even in an offline situation. Some Artificial Intelligence (AI) techniques have been applied to the VNE algorithm design and displayed their abilities. This paper aims to compare the Computacional effectiveness and efficiency of different AI techniques for handling the cost-aware VNE problem. We first propose two kinds of VNE algorithms, based on Ant Colony Optimization and genetic algorithm. Then we carry out extensive simulations to compare the proposed VNE algorithms with the existing Al-based VNE algorithms in terms of the VN Acceptance Ratio, the long-term revenue of the service provider, and the VN embedding cost.
机译:网络虚拟化不仅被视为为云计算应用程序创建生态系统的有前途的技术,而且还被视为未来互联网的有前途的技术。网络虚拟化中最重要的问题之一是虚拟网络嵌入(VNE)问题,该问题处理虚拟网络(VN)请求在基础物理(基础网络)基础结构中的嵌入。当同时考虑节点和链接约束时,即使在脱机情况下,VN嵌入问题也是NP难题。一些人工智能(AI)技术已应用于VNE算法设计并显示了其功能。本文旨在比较不同AI技术在处理成本感知型VNE问题上的计算效率和效率。首先提出基于蚁群优化和遗传算法的两种VNE算法。然后,我们进行了广泛的仿真,以从VN接受率,服务提供商的长期收入以及VN嵌入成本的角度,将建议的VNE算法与现有的基于Al的VNE算法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号