首页> 外文期刊>Engineering Applications of Artificial Intelligence >Image skin segmentation based on multi-agent learning Bayesian and neural network
【24h】

Image skin segmentation based on multi-agent learning Bayesian and neural network

机译:基于多智能体贝叶斯和神经网络的图像皮肤分割

获取原文
获取原文并翻译 | 示例

摘要

Skin colour is considered to be a useful and discriminating spatial feature for many skin detection-related applications, but it is not sufficiently robust to address complex image environments because of light-changing conditions, skin-like colours and reflective glass or water. These factors can create major difficulties in face pixel-based skin detectors when the colour feature is used. Thus, this paper proposes a multi-agent learning method that combines the Bayesian method with a grouping histogram (GH) technique and the back-propagation neural network with a segment adjacent-nested (SAN) technique based on the YCbCr and RGB colour spaces, respectively, to improve skin detection performance. The findings from this study have shown that the proposed multi-agent learning for skin detector has produced significant true positive (TP) and true negative (TN) average rates (i.e. 98.44% and 99.86% respectively). In addition, it has achieved a significantly lower average rate for the false negative (FN) and false positive (FP) (i.e. only 1.56% and 0.14% respectively). The experimental results show that multi-agent learning in the skin detector is more efficient than other approaches.
机译:对于许多与皮肤检测相关的应用,皮肤颜色被认为是有用的且具有区别性的空间特征,但是由于光线变化的条件,类似皮肤的颜色以及反射性玻璃或水,因此皮肤颜色不足以应对复杂的图像环境。当使用颜色功能时,这些因素会给基于面部像素的皮肤检测器造成很大的困难。因此,本文提出了一种基于YCbCr和RGB颜色空间的贝叶斯方法与分组直方图(GH)技术和反向传播神经网络与分段相邻嵌套(SAN)技术相结合的多主体学习方法,分别提高皮肤检测性能。这项研究的结果表明,针对皮肤检测器的拟议多智能体学习产生了显着的真实阳性(TP)和真实阴性(TN)平均率(即分别为98.44%和99.86%)。此外,它的假阴性(FN)和假阳性(FP)的平均比率大大降低(分别仅为1.56%和0.14%)。实验结果表明,皮肤检测器中的多主体学习比其他方法更有效。

著录项

  • 来源
  • 作者单位

    Faculty of Engineering, Multimedia University, Cyberjaya, Selangor Darul Ehsan, Malaysia;

    Faculty of Engineering, Multimedia University, Cyberjaya, Selangor Darul Ehsan, Malaysia;

    Faculty of Engineering, Multimedia University, Cyberjaya, Selangor Darul Ehsan, Malaysia;

    Department of Business Administration, IIUM University, Jalan Gombak, Kuala Lumpur, Malaysia;

    Faculty of Engineering, Multimedia University, Cyberjaya, Selangor Darul Ehsan, Malaysia;

    Department of Computer and Communication Systems, Faculty of Engineering, University Putra Malaysia, Serdang, Selangor, Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Skin detector; Bayesian method; Neural network;

    机译:皮肤检测仪;贝叶斯方法神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号