首页> 外文期刊>Engineering Applications of Artificial Intelligence >Optimal composite morphological supervised filter for image denoising using genetic programming: Application to magnetic resonance images
【24h】

Optimal composite morphological supervised filter for image denoising using genetic programming: Application to magnetic resonance images

机译:基于遗传规划的图像去噪最优复合形态学监督滤波器:在磁共振图像中的应用

获取原文
获取原文并翻译 | 示例

摘要

Composite filters based on mathematical morphological operators (MMO) are getting considerable attraction in image denoising. Most of such approaches depend on pre-fixed combination of MMO. In this paper, we proposed a genetic programming (GP) based approach for denoising magnetic resonance images (MRI) that evolves an optimal composite morphological supervised filter (F_(OCMSF)) by combining the gray-scale MMO. The proposed method is divided into three modules: preprocessing module, GP module, and evaluation module. In preprocessing module, the required components for the development of the proposed GP based filter are prepared. In GP module, F_(OCMSF) is evolved through evaluating the fitness of several individuals over certain number of generations. Finally, the evaluation module provides the mechanism for testing and evaluating the performance of the evolved filter. The proposed method does not need any prior information about the noise variance. The improved performance of the developed filter is investigated using the standard MRI datasets and its performance is compared with previously proposed methods. Comparative analysis demonstrates the superiority of the proposed GP based scheme over the existing approaches.
机译:基于数学形态学运算符(MMO)的复合滤波器在图像去噪中正变得越来越有吸引力。大多数此类方法取决于MMO的固定组合。在本文中,我们提出了一种基于遗传编程(GP)的去噪磁共振图像(MRI)的方法,该方法通过结合灰度MMO来演化出最佳的复合形态学监督滤波器(F_(OCMSF))。所提出的方法分为三个模块:预处理模块,GP模块和评估模块。在预处理模块中,准备了用于开发基于GP的滤波器的必需组件。在GP模块中,F_(OCMSF)是通过评估一定数量的世代中几个个体的适应性而演变而来的。最后,评估模块提供了测试和评估演进滤波器性能的机制。所提出的方法不需要关于噪声方差的任何先验信息。使用标准的MRI数据集研究了改进后的过滤器的性能,并将其性能与先前提出的方法进行了比较。对比分析证明了基于GP的方案优于现有方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号