首页> 外文期刊>Engineering Applications of Artificial Intelligence >Application of the state space neural network to the fault tolerant control system of the PLC-controlled laboratory stand
【24h】

Application of the state space neural network to the fault tolerant control system of the PLC-controlled laboratory stand

机译:状态空间神经网络在PLC控制的实验台容错控制系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the design of a fault tolerant control system for a laboratory stand. With the application of a state space neural network it is possible to design both the nonlinear model and the observer of the considered plant. Analysing outputs of those models, it is possible to carry out fault detection. In order to cope with uncertainties of the model, a robust fault detection scheme is used which is based on the model error modelling technique. When a fault is detected, the fault tolerant control starts to compensate the fault effect. This is achieved through a proper recalculation of a control law. The new control law is obtained by adding an auxiliary signal to the standard control. This auxiliary control constitutes the additional control loop which can affect the stability of the entire control system. Therefore, stability of the proposed control scheme based on the Lyapunov direct method is also investigated. Finally, the approach is tested on the fluid flow and pressure control laboratory stand.
机译:本文涉及用于实验室机架的容错控制系统的设计。通过应用状态空间神经网络,可以设计非线性模型和所考虑植物的观察者。分析那些模型的输出,可以进行故障检测。为了应对模型的不确定性,使用了基于模型误差建模技术的鲁棒故障检测方案。当检测到故障时,容错控制开始补偿故障影响。这是通过适当重新计算控制律来实现的。通过向标准控件添加辅助信号来获得新的控件定律。该辅助控制构成了附加的控制回路,该回路可能会影响整个控制系统的稳定性。因此,还研究了基于Lyapunov直接方法的控制方案的稳定性。最后,该方法在流体流量和压力控制实验室支架上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号