首页> 外文期刊>Engineering Applications of Artificial Intelligence >Context-aware knowledge-based middleware for selective information delivery in data-intensive monitoring systems
【24h】

Context-aware knowledge-based middleware for selective information delivery in data-intensive monitoring systems

机译:基于上下文的知识型中间件,用于数据密集型监视系统中的选择性信息传递

获取原文
获取原文并翻译 | 示例

摘要

Multiple embedded devices in modern control and monitoring systems are able to sense different aspects of the current context such as environmental conditions, current processes in the system and user state. The number of captured situations in the environment and quantity and variety of devices in the system produce considerable amounts of data, which should be processed, understood and followed by corresponding actions. However, fully delivered to the user regardless of their role in the system and needs, data flows cause cognitive overload and thus may compromise the safety of the system depending on the timely response of the operators. This paper addresses the problem of selective information delivery with respect to the user's role in the system, his needs and responsibilities, by proposing context-aware information management middleware. The system utilizes Semantic Web technologies by capturing relevant information in the knowledge model of the system, which decouples data from the application logics. A clear division of data and application logics enables context-awareness and facilitates the reconfiguration process, when new information should be added into the system. The chosen approach is justified with an analysis of main trends in context-aware solutions. The engineering principles of the knowledge model are described and illustrated with simple scenarios from the building automation domain. The prototype developed proves the feasibility of the approach via performance evaluation and demonstrates the reconfiguration capabilities of information flows in the system. Further work assumes the extension of the knowledge model and integration of the system with adaptive human-machine interfaces for multi-role and multi-user environments.
机译:现代控制和监视系统中的多个嵌入式设备能够感知当前环境的不同方面,例如环境条件,系统中的当前过程以及用户状态。环境中捕获到的情况的数量以及系统中设备的数量和种类会产生大量数据,应对这些数据进行处理,理解并采取相应的措施。但是,无论其在系统中的角色和需要如何完全交付给用户,数据流都会导致认知超载,从而可能取决于操作员的及时响应而损害系统的安全性。本文通过提出上下文感知的信息管理中间件,解决了有关用户在系统中的角色,用户的需求和职责方面的选择性信息传递问题。该系统通过捕获系统知识模型中的相关信息来利用语义Web技术,从而将数据与应用程序逻辑分离。当应将新信息添加到系统中时,数据和应用程序逻辑的明确划分可实现上下文感知,并有助于重新配置过程。选择的方法通过对上下文感知解决方案的主要趋势进行分析是合理的。通过楼宇自动化领域中的简单方案描述和说明了知识模型的工程原理。开发的原型通过性能评估证明了该方法的可行性,并演示了系统中信息流的重新配置功能。进一步的工作假设知识模型的扩展以及系统与适用于多角色和多用户环境的自适应人机界面的集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号