首页> 外文期刊>Engineering Applications of Artificial Intelligence >A WordNet-based semantic similarity measurement combining edge-counting and information content theory
【24h】

A WordNet-based semantic similarity measurement combining edge-counting and information content theory

机译:结合边缘计数和信息内容理论的基于WordNet的语义相似度度量

获取原文
获取原文并翻译 | 示例

摘要

Semantic similarity measuring between words can be applied to many applications, such as Artificial Intelligence, Information Processing, Medical Care and Linguistics. In this paper, we present a new approach for semantic similarity measuring which is based on edge-counting and information content theory. Specifically, the proposed measure nonlinearly transforms the weighted shortest path length between the compared concepts to achieve the semantic similarity results, and the relation between parameters and the correlation value is discussed in detail. Experimental results show that the proposed approach not only achieves high correlation value against human ratings but also has better distribution characteristics of the correlation coefficient compared with several related works in the literature. In addition, the proposed method is computationally efficient due to the simplified ways of weighting the shortest path length between the concept pairs.
机译:单词之间的语义相似度测量可以应用于许多应用,例如人工智能,信息处理,医疗保健和语言学。在本文中,我们提出了一种基于边缘计数和信息内容理论的语义相似性度量新方法。具体而言,所提出的措施对所比较概念之间的加权最短路径长度进行非线性变换以实现语义相似性结果,并且详细讨论了参数与相关值之间的关系。实验结果表明,与文献中的几篇相关著作相比,该方法不仅获得了较高的抗人类相关性,而且相关系数的分布特性更好。另外,由于加权概念对之间的最短路径长度的简化方法,所提出的方法在计算上是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号