首页> 外文期刊>Engineering Applications of Artificial Intelligence >A learning-based thresholding method customizable to computer vision applications
【24h】

A learning-based thresholding method customizable to computer vision applications

机译:可自定义为计算机视觉应用程序的基于学习的阈值化方法

获取原文
获取原文并翻译 | 示例

摘要

Although a large variety of thresholding techniques have been developed, the selection of a suitable technique for a particular computer vision application is still unsolved and often requires long error and trial procedures analyzing the performance and robustness of different methods. This paper proposes a training-based method that is capable of capturing, learning and imitating thresholding performance from a set of training images allowing ad-hoc adaptation to a given problem. It is applied in two stages: learning and application. In the learning stage a histogram mode object/background classifier is trained with a set of training images and their respective desired threshold values determined by a human. In the application stage, the histogram modes resulting from multi-mode decomposition are classified with the trained classifier and the threshold is computed using a tunable minimum classification error criterion. The presented method can be used in bi-level and multi-level thresholding and requires no settings since all its parameters are determined in the learning step. It has been successfully applied to several problems, some of which are described in the paper.
机译:尽管已经开发了多种阈值化技术,但针对特定计算机视觉应用的合适技术的选择仍未解决,并且经常需要较长的错误和尝试过程来分析不同方法的性能和鲁棒性。本文提出了一种基于训练的方法,该方法能够从一组训练图像中捕获,学习和模仿阈值性能,从而允许对给定问题进行临时适应。它分为两个阶段:学习和应用。在学习阶段,直方图模式的对象/背景分类器使用一组训练图像进行训练,并且它们各自的期望阈值由人类确定。在应用阶段,使用训练有素的分类器对多模式分解产生的直方图模式进行分类,并使用可调最小分类误差准则计算阈值。所提出的方法可以用于双层阈值和多层阈值,并且不需要设置,因为其所有参数都是在学习步骤中确定的。它已成功应用于几个问题,其中一些已在本文中进行了描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号