机译:分层k近邻分类法和二进制微分演化算法,用于在可变条件下运行的汽车轴承的故障诊断
Energy Department, Politecnico di Milano, Via la Masa 34, 20156 Milano, Italy;
Energy Department, Politecnico di Milano, Via la Masa 34, 20156 Milano, Italy,Aramis Srl, Milano, Italy;
Energy Department, Politecnico di Milano, Via la Masa 34, 20156 Milano, Italy;
Energy Department, Politecnico di Milano, Via la Masa 34, 20156 Milano, Italy,Aramis Srl, Milano, Italy,System Science and Energetic Challenge Fondation Electricite de France (EDF), CentraleSupelec, Univerisite Paris Saclay, Voie des vignes 92290, Chatenay-Malabry, France;
Bearing diagnostics; K-Nearest Neighbours (KNN) classifier; Feature selection; Wrapper approach; Multi-Objective (MO) optimization; Differential Evolution (DE); Wavelet Packet Transform (WPD);
机译:基于WPT和SVD的故障特征提取和分类:在可变条件下具有人工创建故障的元素轴承的应用
机译:基于k近邻算法的小波和Hilbert Huang变换的风力机不平衡故障分类模型。
机译:在变化的工况下使用包络线分析进行滚动轴承诊断的新程序
机译:基于小波变换和CNN的可变操作条件下机械轴承故障检测与分类
机译:在更改操作条件和新型故障类型的背景下对故障检测和诊断的对比学习
机译:分层k近邻分类法和二进制微分演化算法,用于在可变条件下运行的汽车轴承的故障诊断