首页> 外文期刊>Engineering Applications of Artificial Intelligence >Hierarchical k-nearest neighbours classification and binary differential evolution for fault diagnostics of automotive bearings operating under variable conditions
【24h】

Hierarchical k-nearest neighbours classification and binary differential evolution for fault diagnostics of automotive bearings operating under variable conditions

机译:分层k近邻分类法和二进制微分演化算法,用于在可变条件下运行的汽车轴承的故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Electric traction motors in automotive applications work in operational conditions characterized by variable load, rotational speed and other external conditions: this complicates the task of diagnosing bearing defects. The objective of the present work is the development of a diagnostic system for detecting the onset of degradation, isolating the degrading bearing, classifying the type of defect. The developed diagnostic system is based on an hierarchical structure of K-Nearest Neighbours classifiers. The selection of the features from the measured vibrational signals to be used in input by the bearing diagnostic system is done by a wrapper approach based on a Multi-Objective (MO) optimization that integrates a Binary Differential Evolution (BDE) algorithm with the K-Nearest Neighbor (KNN) classifiers. The developed approach is applied to an experimental dataset. The satisfactory diagnostic performances obtain show the capability of the method, independently from the bearings operational conditions.
机译:汽车应用中的牵引电机在以可变负载,转速和其他外部条件为特征的运行条件下工作:这使诊断轴承缺陷的任务变得复杂。本工作的目的是开发一种诊断系统,用于检测退化的开始,隔离退化的轴承,分类缺陷的类型。所开发的诊断系统基于K最近邻居分类器的层次结构。通过基于多目标(MO)优化的包装方法,从测量的振动信号中选择要用于轴承诊断系统输入的特征,该方法将二进制差分演化(BDE)算法与K-最近邻(KNN)分类器。所开发的方法被应用于实验数据集。获得的令人满意的诊断性能证明了该方法的能力,与轴承的运行条件无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号