首页> 外文期刊>Engineering Applications of Artificial Intelligence >Identifying user habits through data mining on call data records
【24h】

Identifying user habits through data mining on call data records

机译:通过对呼叫数据记录进行数据挖掘来识别用户习惯

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a frameworks for identifying patterns and regularities in the pseudo-anon-ymized Call Data Records (CDR) pertaining a generic subscriber of a mobile operator. We face the challenging task of automatically deriving meaningful information from the available data, by using an unsupervised procedure of cluster analysis and without including in the model any a priori knowledge on the applicative context. Clusters mining results are employed for understanding users' habits and to draw their characterizing profiles. We propose two implementations of the data mining procedure; the first is based on a novel system for clusters and knowledge discovery called LD-ABCD, capable of retrieving clusters and, at the same time, to automatically discover for each returned cluster the most appropriate dissimilarity measure (local metric). The second approach instead is based on PROCLUS, the well-know subclustering algorithm. The dataset under analysis contains records characterized only by few features and, consequently, we show how to generate additional fields which describe implicit information hidden in data. Finally, we propose an effective graphical representation of the results of the data-mining procedure, which can be easily understood and employed by analysts for practical applications.
机译:在本文中,我们提出了一个框架,用于识别与移动运营商通用订户有关的伪匿名符号化呼叫数据记录(CDR)中的模式和规则。我们面临着一项艰巨的任务,即通过使用无监督的聚类分析程序从可用数据中自动获取有意义的信息,并且在模型中不包含有关适用上下文的任何先验知识。集群挖掘结果用于了解用户的习惯并绘制他们的特征配置文件。我们提出了数据挖掘过程的两种实现方式:第一个基于用于群集和知识发现的新型系统LD-ABCD,该系统能够检索群集,并同时为每个返回的群集自动发现最合适的差异度量(局部度量)。相反,第二种方法是基于众所周知的子群集算法PROCLUS。分析中的数据集包含仅具有少量特征的记录,因此,我们展示了如何生成其他字段来描述隐藏在数据中的隐式信息。最后,我们提出了数据挖掘过程结果的有效图形表示,分析人员可以很容易地理解它并将其用于实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号