首页> 外文期刊>Engineering Applications of Artificial Intelligence >Jointly identifying opinion mining elements and fuzzy measurement of opinion intensity to analyze product features
【24h】

Jointly identifying opinion mining elements and fuzzy measurement of opinion intensity to analyze product features

机译:联合识别意见挖掘元素并模糊评估意见强度以分析产品特征

获取原文
获取原文并翻译 | 示例

摘要

Opinion mining mainly involves three elements: feature and feature-of relations, opinion expressions and the related opinion attributes (e.g. Polarity), and feature-opinion relations. Although many works have emerged to achieve its aim of gaining information, the previous researches typically handled each of the three elements in isolation, which cannot give sufficient information extraction results; hence, the complexity and the running time of information extraction is increased. In this paper, we propose an opinion mining extraction algorithm to jointly discover the main opinion mining elements. Specifically, the algorithm automatically builds kernels to combine closely related words into new terms from word level to phrase level based on dependency relations; and we ensure the accuracy of opinion expressions and polarity based on: fuzzy measurements, opinion degree intensifiers, and opinion patterns. The 3458 analyzed reviews show that the proposed algorithm can effectively identify the main elements simultaneously and outperform the baseline methods. The proposed algorithm is used to analyze the features among heterogeneous products in the same category. The feature-by-feature comparison can help to select the weaker features and recommend the correct specifications from the beginning life of a product. From this comparison, some interesting observations are revealed. For example, the negative polarity of video dimension is higher than the product usability dimension for a product. Yet, enhancing the dimension of product usability can more effectively improve the product.
机译:意见挖掘主要涉及三个元素:要素关系和要素关系,意见表达和相关的意见属性(例如,极性)以及要素意见关系。尽管为实现获取信息的目的已经出现了许多工作,但是以前的研究通常是孤立地处理这三个要素中的每一个,这不能给出足够的信息提取结果。因此,增加了信息提取的复杂度和运行时间。在本文中,我们提出一种观点挖掘提取算法,以共同发现主要观点挖掘元素。具体来说,该算法会自动构建内核,以根据依赖关系将紧密相关的单词组合成单词级别到短语级别的新单词;并且我们基于以下方面来确保观点表达和极性的准确性:模糊度量,观点程度增强剂和观点模式。经过3458次分析后的评论表明,该算法可以有效地同时识别主要元素,并且性能优于基线方法。该算法用于分析同一类别异构产品之间的特征。逐项功能比较可以帮助您选择较弱的功能,并从产品的使用寿命开始就推荐正确的规格。通过这种比较,发现了一些有趣的观察结果。例如,视频尺寸的负极性高于产品的产品可用性尺寸。但是,提高产品可用性的维度可以更有效地改善产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号