首页> 外文期刊>Engineering Applications of Artificial Intelligence >An enhanced genetic algorithm with new operators for task scheduling in heterogeneous computing systems
【24h】

An enhanced genetic algorithm with new operators for task scheduling in heterogeneous computing systems

机译:一种具有新运算符的增强型遗传算法,用于异构计算系统中的任务调度

获取原文
获取原文并翻译 | 示例

摘要

One of the important problems in heterogeneous computing systems is task scheduling. The task scheduling problem intends to assigns tasks to a number of processors in a manner that will optimize the overall performance of the system, i.e. minimizing execution time or maximizing parallelization in assigning the tasks to the processors. The task scheduling problem is an NP-complete and this is why the algorithms applied to this problem are heuristic or meta-heuristic by which we could reach a relatively optimal solution. This paper presents a genetic-based algorithm as a meta-heuristic method to address static task scheduling for processors in heterogeneous computing systems. The algorithm improves the performance of genetic algorithm through significant changes in its genetic functions and introduction of new operators that guarantee sample variety and consistent coverage of the whole space. Moreover, the random initial population has been replaced with some initial populations with relatively optimized solutions to lower repetitions in the genetic algorithm. The results of running this algorithm on the graphs of real-world applications and random graphs in heterogeneous computing systems with a wide range of characteristics, indicated significant improvements of efficiency of the proposed algorithm compared with other task scheduling algorithms.
机译:异构计算系统中的重要问题之一是任务调度。任务调度问题旨在以将优化系统整体性能的方式将任务分配给多个处理器,即,在将任务分配给处理器时最小化执行时间或最大化并行化。任务调度问题是一个NP完全问题,这就是为什么应用于此问题的算法是启发式或元启发式算法的原因,通过这些算法,我们可以获得相对最优的解决方案。本文提出了一种基于遗传的算法作为元启发式方法,以解决异构计算系统中处理器的静态任务调度问题。该算法通过显着改变其遗传功能并引入新的算子来保证遗传样本的多样性和对整个空间的一致覆盖,从而提高了遗传算法的性能。此外,随机初始种群已被一些初始种群所取代,这些初始种群具有相对优化的解决方案,可降低遗传算法中的重复次数。在具有广泛特性的异构计算系统中,在实际应用程序图和随机图上运行该算法的结果表明,与其他任务调度算法相比,该算法的效率有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号