首页> 外文期刊>Engineering Applications of Artificial Intelligence >ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler
【24h】

ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler

机译:ThermalNet:基于深度强化学习的燃煤锅炉燃烧优化系统

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a combustion optimization system for coal-fired boilers that includes a trade-off between emissions control and boiler efficiency. Designing an optimizer for this nonlinear, multiple-input multiple-output problem is challenging. This paper describes the development of an integrated combustion optimization system called ThermalNet, which is based on a deep Q-network (DQN) and a long short-term memory (LSTM) module. ThermalNet is a highly automated system consisting of an LSTM–ConvNet predictor and a DQN optimizer. The LSTM–ConvNet extracts the features of boiler behavior from the distributed control system (DCS) operational data of a supercritical thermal plant. The DQN reinforcement learning optimizer contributes to the online development of policies based on static and dynamic states. ThermalNet establishes a sequence of control actions that both reduce emissions and simultaneously enhance fuel utilization. The internal structure of the DQN optimizer demonstrates a greater representation capacity than does the shallow multilayer optimizer. The presented experiments indicate the effectiveness of the proposed optimization system.
机译:本文提出了一种用于燃煤锅炉的燃烧优化系统,该系统包括排放控制和锅炉效率之间的权衡。为这个非线性,多输入多输出问题设计优化器具有挑战性。本文介绍了一个名为ThermalNet的集成燃烧优化系统的开发,该系统基于一个深度Q网络(DQN)和一个长期短期记忆(LSTM)模块。 ThermalNet是一个高度自动化的系统,由LSTM–ConvNet预测器和DQN优化器组成。 LSTM–ConvNet从超临界热电厂的分布式控制系统(DCS)运行数据中提取锅炉行为的特征。 DQN强化学习优化器有助于基于静态和动态状态的策略在线开发。 ThermalNet建立了一系列控制措施,既可以减少排放,又可以提高燃料利用率。与浅层多层优化器相比,DQN优化器的内部结构具有更大的表示能力。提出的实验表明了所提出的优化系统的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号