首页> 外文期刊>Engineering Applications of Artificial Intelligence >Probability transformation of mass function: A weighted network method based on the ordered visibility graph
【24h】

Probability transformation of mass function: A weighted network method based on the ordered visibility graph

机译:质量函数的概率变换:基于有序可见性图的加权网络方法

获取原文
获取原文并翻译 | 示例

摘要

Transform of basic probability assignment to probability distribution is an important aspect of decision making process. To address this issue, a weighted network method based on the ordered visibility graph is proposed in this paper, named OVGWP. In this proposed method, the information volume of focal elements is calculated by belief entropy. The entropy value is used to determine the rank of each proposition. After generating the rank, a weighted network corresponding to the given basic probability assignment can be constructed. The global ratio for proportional belief transformation is determined by the degree of nodes and its weighted edges in the network. Compared with existing ordered visibility graph probability, we have considered not only the belief value itself, but also the cardinality of basic probability assignment. Hence the proposed OVGWP considers a much more comprehensive information for transformation. Experimental results reveal that OVGWP produces an effective and reasonable transformation performance compared with existing methods. If the basic probability assignment is given as m(Θ) = 1, the proposed OVGWP has the same result with pignistic probability transformation. The proposed OVGWP satisfies the consistency of the upper and lower boundaries.
机译:基本概率分配转换为概率分布是决策过程的一个重要方面。要解决此问题,本文提出了一种基于订购可见性图形的加权网络方法,名为OVGWP。在这种提出的方​​法中,通过信仰熵计算焦点元素的信息量。熵值用于确定每个命题的等级。在生成等级之后,可以构建对应于给定的基本概率分配的加权网络。比例信念变换的全局比率由网络中的节点和加权边缘决定。与现有有序可见性图表概率相比,我们不仅考虑了信仰价值本身,还考虑了基本概率分配的基数。因此,拟议的OVGWP考虑了更全面的转型信息。实验结果表明,与现有方法相比,OVGWP产生了有效且合理的转化性能。如果基本概率分配被给出为M(θ)= 1,则所提出的OVGWP具有与Pignisir概率变换相同的结果。所提出的OVGWP满足上边界和下边界的一致性。

著录项

  • 来源
    《Engineering Applications of Artificial Intelligence》 |2021年第10期|104438.1-104438.8|共8页
  • 作者单位

    Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu China;

    Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu China School of Education Shaanxi Normal University Xi'an China School of Knowledge Science Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1211 Japan Department of Management Technology and Economics ETH Zurich Zurich Switzerland;

    Science Mathematics and Technology Cluster Singapore University of Technology and Design 8 Somapah Road S487372 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dempster-Shafer evidence theory; Probability transformation; Visibility graph; Belief entropy;

    机译:Dempster-Shafer证据理论;概率转化;可见性图;信仰熵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号