首页> 外文期刊>Engineering Applications of Artificial Intelligence >Improving current interest with item and review sequential patterns for sequential recommendation
【24h】

Improving current interest with item and review sequential patterns for sequential recommendation

机译:用物品提高当前兴趣并审查顺序推荐的顺序模式

获取原文
获取原文并翻译 | 示例

摘要

Sequential recommendation (SR) aims to recommend items based on user information and behavior sequences. Almost all the existing works for SR construct short-term preference and long-term preference only based on the user-item interactions or the reviews rather than considering the two types of information simultaneously. In fact, interaction items and reviews commonly reflect the user's semantic information, and play significant roles in modeling the user preference. In this paper, we propose a novel model named Parallel Item sequential pattern and Review Sequential Pattern (PIRSP) for the sequential recommendation. Specifically, first, PIRSP learns two levels of sequential patterns from item and review information, respectively: (1) item sequential pattern, which uses a gated recurrent unit with an item-attention mechanism to model history behavior sequences; (2) review sequential pattern, which takes a convolution neural network with a target-attention mechanism for modeling associated reviews of interaction items. Then, we introduce a fusion gating mechanism for selectively combining the two sequential patterns to learn the short-term preference. Second, we employ a convolution neural network with aspect information to learn the long-term preference. Finally, we utilize a linear fusion on the long-term preference and short-term preference for modeling user preference and making final recommendation. The experimental results indicate that our model outperforms other state-of-the-art methods on the Amazon dataset. Our analysis of PIRSP's recommendation process shows the positive effect of the two types of information and fusion gating mechanism on the performance of sequential recommendation.
机译:顺序推荐(SR)旨在根据用户信息和行为序列推荐项目。对于SR的几乎所有现有的工作,只基于用户项目交互或审查,而不是同时考虑两种类型的信息,只能构建短期偏好和长期偏好。实际上,互动项和审查通常反映用户的语义信息,并在建模用户偏好方面发挥重要作用。在本文中,我们提出了一种名为Parallate Item顺序模式的新型模型,并查看顺序推荐的顺序模式(PIRSP)。具体而言,首先,PiRSP分别从项目和审查信息中学习两个级别的顺序模式:(1)项目顺序模式,它使用带有项目注意机制的门控复发单元来建立历史行为序列; (2)审查序贯模式,采用卷积神经网络,具有针对互动项的相关审查的目标关注机制。然后,我们介绍一种用于选择性地组合两个连续模式来学习短期偏好的融合门控机构。其次,我们采用卷积神经网络与方面信息来学习长期偏好。最后,我们利用了线性融合来对长期偏好和短期偏好来建模用户偏好和最终推荐。实验结果表明,我们的模型在亚马逊数据集上突出了其他最先进的方法。我们对PiRSP的推荐过程的分析表明了两种类型的信息和融合门控机制对顺序推荐性能的积极影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号