首页> 外文期刊>Engineering Applications of Artificial Intelligence >Erasable pattern mining based on tree structures with damped window over data streams
【24h】

Erasable pattern mining based on tree structures with damped window over data streams

机译:基于树结构的可擦除模式挖掘在数据流中的Damped窗口

获取原文
获取原文并翻译 | 示例

摘要

Several pattern mining methods have been proposed to process dynamic data streams because the data generated in industrial fields is continually accumulated. Erasable pattern mining techniques for processing dynamic data streams are needed to discover erasable patterns from dynamic data streams. In previous erasable pattern mining approaches suggested for dynamic data streams, all data are considered to have the same importance regardless of its timestamp. However, dynamic data streams have the characteristic that the new data is relatively more significant than the old data. In erasable pattern mining, one of the desired techniques is an approach in consideration of such characteristic of data streams. For this reason, we propose an erasable pattern mining algorithm over dynamic data streams based on the damped window model. Since the suggested technique considers the new data more important than the previous data, it can find more useful erasable patterns. In addition, erasable pattern mining based on the damped window model is conducted efficiently by employing the tree and table structures. In performance test, we present that our pruning techniques remove unnecessary operations related to invalid erasable patterns efficiently from damped-window-based data streams. Performance evaluation results using real datasets and synthetic datasets show that the proposed approach has good performance with regard to as execution time, pattern generation, and scalability by comparing between the suggested technique and the state of the art algorithms.
机译:已经提出了几种模式挖掘方法来处理动态数据流,因为在工业字段中产生的数据不断累积。需要用于处理动态数据流的可擦除模式挖掘技术来发现来自动态数据流的可擦除模式。在以前建议动态数据流的先前可擦除​​模式挖掘方法中,无论其时间戳如何,所有数据都被认为具有相同的重要性。但是,动态数据流具有比旧数据相对更重要的特征。在可擦除的模式挖掘中,考虑到数据流的这种特征的方法之一是一种方法。出于这个原因,我们提出了一种基于阻尼窗口模型的动态数据流的可擦除模式挖掘算法。由于建议的技术认为新数据比以前的数据更重要,因此它可以找到更有用的可擦除模式。另外,通过采用树木和表结构,有效地对基于阻尼窗口模型进行可擦除的模式挖掘。在性能测试中,我们提出了我们的修剪技术从基于Damped-窗口的数据流中有效地消除了与无效可擦除模式相关的不必要的操作。使用真实数据集和合成数据集的性能评估结果表明,通过比较所建议的技术和技术算法的状态,所提出的方法具有良好的执行时间,模式生成和可扩展性。

著录项

  • 来源
    《Engineering Applications of Artificial Intelligence》 |2020年第9期|103735.1-103735.20|共20页
  • 作者单位

    Department of Computer Engineering Sejong University Seoul Republic of Korea;

    Department of Computer Engineering Sejong University Seoul Republic of Korea;

    Department of Computer Engineering Sejong University Seoul Republic of Korea;

    Department of Computer Engineering Sejong University Seoul Republic of Korea;

    Department of Computer Engineering Sejong University Seoul Republic of Korea;

    Department of Electronics Engineering Konkuk University Seoul Republic of Korea;

    Faculty of Information Technology Ho Chi Minh City University of Technology (HUTECH) Ho Chi Minh City Vietnam;

    Department of Computer Science Electrical Engineering and Mathematical Sciences Western Norway University of Applied Sciences Bergen Norway;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Erasable pattern mining; Damped window; Tree structures; Pruning technique; Stream mining;

    机译:可擦除模式挖掘;阻尼窗口;树结构;修剪技术;流挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号