首页> 外文期刊>Engineering Applications of Artificial Intelligence >Interval-valued fuzzy spiking neural P systems for fault diagnosis of power transmission networks
【24h】

Interval-valued fuzzy spiking neural P systems for fault diagnosis of power transmission networks

机译:用于电力传输网络故障诊断的间隔 - 值模糊尖峰神经P系统

获取原文
获取原文并翻译 | 示例

摘要

It is a challenge problem how to deal with the uncertainty in fault diagnosis of power systems. To solve the challenge problem, this paper introduces an interval-valued fuzzy spiking neural P system (IVFSNP system), where the interval-valued fuzzy logic is integrated into spiking neural P systems to characterize the uncertainty. Based on the IVFSNP system, a fuzzy reasoning algorithm is presented, and the corresponding fault diagnosis model is developed. IVFSNP system is capable of describing the incomplete and uncertain fault signals from a supervisory control and data acquisition system equipped together with electric power systems. In order to evaluate the availability and effectiveness of the proposed fault diagnosis model, two case studies of fault diagnosis of a transmission network are discussed and analyzed, including complex and multiple fault situations with the incomplete and uncertain status signals. The results of the case studies demonstrate that IVFSNP system can be used to diagnose the faulty sections in power transmission networks accurately and effectively.
机译:这是一个挑战问题,如何处理电力系统故障诊断的不确定性。为了解决挑战问题,本文介绍了间隔值模糊尖峰神经P系统(IVFSNP系统),其中间隔值模糊逻辑集成到尖峰神经P系统中,以表征不确定性。基于IVFSNP系统,提出了一种模糊推理算法,开发了相应的故障诊断模型。 IVFSNP系统能够描述来自配备电力系统的监控控制和数据采集系统的不完整和不确定的故障信号。为了评估所提出的故障诊断模型的可用性和有效性,讨论和分析了两种对传输网络故障诊断的案例研究,包括具有不完整和不确定的状态信号的复杂和多个故障情况。案例研究的结果表明,IVFSNP系统可用于准确且有效地诊断电力传输网络中的故障部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号