首页> 外文期刊>Engineering Applications of Artificial Intelligence >Visual analysis of socio-cognitive crowd behaviors for surveillance: A survey and categorization of trends and methods
【24h】

Visual analysis of socio-cognitive crowd behaviors for surveillance: A survey and categorization of trends and methods

机译:监督社会认知人群行为的视觉分析:趋势与方法的调查与分类

获取原文
获取原文并翻译 | 示例

摘要

Monitoring and inferring socio-cognitive behaviors through crowd analysis can help us to understand many processes. Be it people in crowded environments, road traffic or even a flock of fish, situational awareness becomes critical for creating adequate disaster response, providing incident management, exercising control, etc. Recent researches have indicated that crowd modeling is conventionally based on density analysis. However, socio-cognitive behavior studies have demonstrated that crowds often display a wide variety of behaviors that arise spontaneously from the collective motions of unconnected individuals. Therefore, behavior analysis employing physics-based approaches only, thereby neglecting the socio-psychological aspects, may present diverse challenges to accurate inference. This means that by identifying and modeling some of the interacting agents that underpin the evolution of such behaviors, we can deliver contexts that can help in the autonomous analysis of social and antisocial behaviors in crowded environments. This paper discusses these issues from the machine vision perspective. In particular, socio-cognitive models of crowds are linked to low-level mechanisms of crowd modeling and feature extraction. A survey of recent works on crowd behavior analysis is conducted under a proposed behavioral categorization based on the level of the performed analysis and identified behaviors. Finally, discussions and recommendations are provided toward the advancement in the field.
机译:通过人群分析监测和推断社会认知行为可以帮助我们理解许多过程。在拥挤的环境中,道路交通甚至是一群鱼的人,态势意识对于创造充足的灾害反应来说至关重要,提供事件管理,行使控制等。最近的研究表明,人群建模是基于密度分析的规范。然而,社会认知行为研究表明,人群经常展现出从未连接的个体的集体动作自发出现的各种行为。因此,仅采用基于物理的方法的行为分析,从而忽视社会心理方面,可能对准确推断呈现不同的挑战。这意味着通过识别和建模一些在这种行为的演变的互动特工中建模,我们可以提供可以帮助在拥挤环境中的社会和反社会行为的自主分析中的语境。本文从机器视觉角度讨论了这些问题。特别是,人群的社会认知模型与人群建模和特征提取的低级别机制有关。基于所执行的分析和识别行为的级别,在拟议的行为分类中进行了对人群行为分析的近期作品的调查。最后,向该领域的进步提供了讨论和建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号