首页> 外文期刊>Engineering Applications of Artificial Intelligence >An effective clustering method based on data indeterminacy in neutrosophic set domain
【24h】

An effective clustering method based on data indeterminacy in neutrosophic set domain

机译:中智集域中基于数据不确定性的有效聚类方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, a new clustering algorithm is proposed based on neutrosophic set (NS) theory. The main contribution is to use NS to handle boundary and outlier points as challenging points of clustering methods. In the first step, a new definition of data indeterminacy (indeterminacy set) is proposed in NS domain based on density properties of data. Lower indeterminacy is assigned to data points in dense regions and vice versa. In the second step, indeterminacy set is presented for a proposed cost function in NS domain by considering a set of main clusters and a noisy cluster. In the proposed cost function, two conditions based on distance from cluster centers and value of indeterminacy, are considered for each data point. In the third step, the proposed cost function is minimized by gradient descend methods. Data points are clustered based on their membership degrees. Outlier points are assigned to noise cluster; and boundary points are assigned to main clusters with almost same membership degrees. To show the effectiveness of the proposed method, three types of datasets including diamond, UCI and image datasets are used. Results demonstrate that the proposed cost function handles boundary and outlier points with more accurate membership degrees and outperforms existing state of the art clustering methods in all datasets.
机译:在这项工作中,基于中智集(NS)理论提出了一种新的聚类算法。主要贡献是使用NS来处理边界点和离群点,作为聚类方法的挑战点。第一步,基于数据的密度特性,在NS域中提出了数据不确定性(不确定性集)的新定义。将较低的不确定性分配给密集区域中的数据点,反之亦然。第二步,通过考虑一组主群集和一个噪声群集,为NS域中的拟议成本函数提供不确定性集。在建议的成本函数中,针对每个数据点考虑了基于距聚类中心的距离和不确定性值的两个条件。第三步,通过梯度下降法将建议的成本函数最小化。数据点根据其隶属度进行聚类。离群点分配给噪声簇;和边界点被分配给具有几乎相同隶属度的主集群。为了显示该方法的有效性,使用了三种类型的数据集,包括菱形,U​​CI和图像数据集。结果表明,提出的成本函数可以更准确地隶属度处理边界点和离群点,并且在所有数据集中均优于现有的现有聚类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号