首页> 外文期刊>Engineering Applications of Artificial Intelligence >Lazy reinforcement learning for real-time generation control of parallel cyber-physical-social energy systems
【24h】

Lazy reinforcement learning for real-time generation control of parallel cyber-physical-social energy systems

机译:惰性强化学习,用于并行网络,物理,社会,能源系统的实时发电控制

获取原文
获取原文并翻译 | 示例

摘要

To learn human intelligence, the social system/human system is added to a cyber-physical energy system in this paper. To accelerate the configuration process of the parameters of the cyber-physical energy system, parallel systems based on artificial societies-computational experiments-parallel execution are added to the cyber-physical energy system, i.e., a parallel cyber-physical-social energy system is proposed in this paper. This paper proposes a real-time generation control framework to replace the conventional generation control framework with multiple time scales, which consist of long-term time scale, short-term time scale, and real-time scale. Since a lazy operator employed into reinforcement learning, a lazy reinforcement learning is proposed for the real-time generation control framework. To reduce the real simulation time, multiple virtual parallel cyber-physical-social energy systems and a real parallel cyber-physical-social energy system are built for the real-time generation control of large-scale multi-area interconnected power systems. Compared with a total of 146016 conventional generation control algorithms and a relaxed artificial neural network in the simulation of IEEE 10-generator 39-bus New-England power system, the proposed lazy reinforcement learning based realtime generation control controller can obtain the highest control performance. The active power between two areas and the systemic frequency deviation can be reduced by the lazy reinforcement learning, and the simulation results verify the effectiveness and feasibility of the proposed lazy reinforcement learning based real-time generation control controller for the parallel cyber-physical-social energy systems.
机译:为了学习人类智能,本文将社会系统/人类系统添加到了网络物理能量系统中。为了加速网络物理能源系统参数的配置过程,在网络物理能源系统中增加了基于人工社会-计算实验-并行执行的并行系统,即并行网络物理-社会-社会能源系统。本文提出。本文提出了一种实时发电控制框架,用多个时间尺度来代替常规的发电控制框架,该多个时间尺度包括长期时间尺度,短期时间尺度和实时尺度。由于在强化学习中采用了惰性运算符,因此针对实时生成控制框架提出了一种惰性强化学习。为了减少实际的仿真时间,构建了多个虚拟并行网络物理社会能源系统和一个实际并行网络物理社会能源系统,用于大规模多区域互联电力系统的实时发电控制。在IEEE 10发电机39总线新英格兰电力系统的仿真中,与总共146016常规发电控制算法和宽松的人工神经网络相比,所提出的基于惰性强化学习的实时发电控制控制器可以获得最高的控制性能。懒人强化学习可以减少两个区域之间的有功功率和系统频率偏差,仿真结果验证了所提出的基于懒人强化学习的并行网络物理社会实时生成控制控制器的有效性和可行性。能源系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号