首页> 外文期刊>Engineering Applications of Artificial Intelligence >Estimating cement compressive strength using three-dimensional microstructure images and deep belief network
【24h】

Estimating cement compressive strength using three-dimensional microstructure images and deep belief network

机译:使用三维显微图像和深度置信网络估算水泥抗压强度

获取原文
获取原文并翻译 | 示例

摘要

The estimation of cement compressive strength is of great significance in the quality inspections, technological designs, and engineering applications for cement. Compared to destructive methods, the nondestructive estimation approaches save the cost in the manpower and material. However, the existing nondestructive methods have the large error because the used influence factors are difficult to control and the used two-dimensional microstructure images can not reflect the specific spatial structure of the entire cement. In this paper, a novel model is proposed to estimate the cement compressive strength using three-dimensional microstructure images and deep belief network. To reduce the computation consumption induced by three-dimensional images with abundant information, this method extracts image features that reflect the cement hydration state to estimate cement compressive strength. Deep belief network is applied to build the estimation model. Its unique training pattern and flexibility of parameters improve the ability to learn nonlinear relationships between microstructure images and cement compressive strength. Furthermore, the training processes are accelerated on the graphics processing units. The experimental results prove that the proposed method estimates cement compressive strength nondestructively and improves the efficiency.
机译:水泥抗压强度的估计在水泥的质量检查,技术设计和工程应用中具有重要意义。与破坏性方法相比,非破坏性估计方法节省了人力和物力成本。然而,现有的非破坏性方法具有较大的误差,这是因为所使用的影响因素难以控制,并且所使用的二维显微组织图像不能反映整个水泥的特定空间结构。在本文中,提出了一种使用三维显微图像和深度置信网络估算水泥抗压强度的新模型。为了减少具有丰富信息的三维图像所引起的计算消耗,此方法提取了反映水泥水化状态的图像特征,以估算水泥的抗压强度。应用深度信念网络构建估计模型。其独特的训练模式和参数灵活性提高了学习微观结构图像与水泥抗压强度之间非线性关系的能力。此外,在图形处理单元上加速了训练过程。实验结果证明,该方法可以无损地估算水泥抗压强度,提高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号