首页> 外文期刊>Engineering Applications of Artificial Intelligence >Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm
【24h】

Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm

机译:基于Volterra自适应滤波器和改进的鲸鱼优化算法的短期天然气消耗预测。

获取原文
获取原文并翻译 | 示例

摘要

Short-term natural gas consumption prediction is an important indicator of natural gas pipeline network planning and design, which is of great significance. The purpose of this study is to propose a novel hybrid forecast model in view of the Volterra adaptive filter and an improved whale optimization algorithm to predict the short-term natural gas consumption. Firstly, Gauss smoothing and C-C method is adopted to pretreat and reconstruct short-term natural gas consumption time series; secondly, to improve the performance of whale optimization algorithm, adaptive search-surround mechanism and spiral position and jumping behavior are introduced into it; Thirdly, Volterra adaptive filter is used to predict the short-term natural gas consumption, and the important parameters (e.g. embedding dimension) is optimized by improved whale optimization algorithm. Finally, an actual example is given to test the performance of the developed prediction model. The results indicate that (1) short-term natural gas consumption time series has chaotic characteristics; (2) performance of the improved whale optimization algorithm is better than some comparative algorithms (i.e. cuckoo optimization algorithm, etc. ) based on the different evaluation indicators; (3) exploration factor is the main operational factor; (4) the performance of the proposed prediction model is better than some advanced prediction models (e.g. back propagation neural network). It can be concluded that such an innovative hybrid prediction model may provide a reference for natural gas companies to achieve intelligent scheduling.
机译:短期天然气消费量预测是天然气管网规划设计的重要指标,具有重要意义。这项研究的目的是针对Volterra自适应滤波器提出一种新颖的混合预测模型,并提出一种改进的鲸鱼优化算法来预测短期天然气消耗。首先,采用高斯平滑法和CC法对短期天然气消耗时间序列进行预处理和重构。其次,为提高鲸鱼优化算法的性能,引入了自适应搜索包围机制以及螺旋位置和跳跃行为。第三,利用Volterra自适应滤波器来预测短期天然气消耗,并通过改进的鲸鱼优化算法来优化重要参数(例如嵌入尺寸)。最后,给出一个实际的例子来测试开发的预测模型的性能。结果表明:(1)短期天然气消费时间序列具有混沌特征; (2)改进后的鲸鱼优化算法的性能优于基于不同评估指标的某些比较算法(例如布谷鸟优化算法等); (3)勘探因素是主要的经营因素; (4)所提出的预测模型的性能优于某些高级预测模型(例如,反向传播神经网络)。可以得出结论,这种创新的混合预测模型可以为天然气公司实现智能调度提供参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号