首页> 外文期刊>Engineering Applications of Artificial Intelligence >State space neural networks and model-decomposition methods for fault diagnosis of complex industrial systems
【24h】

State space neural networks and model-decomposition methods for fault diagnosis of complex industrial systems

机译:复杂工业系统故障诊断的状态空间神经网络和模型分解方法

获取原文
获取原文并翻译 | 示例

摘要

Reliable and timely fault detection and isolation are necessary tasks to guarantee continuous performance in complex industrial systems, avoiding failure propagation in the system and helping to minimize downtime. Model-based diagnosis fulfils those requirements, and has the additional advantage of using reusable models. However, reusing existing complex non-linear models for diagnosis in large industrial systems is not straightforward. Most of the times, the models have been created for other purposes different from diagnosis, and many times the required analytical redundancy is small. The approach proposed in this work combines techniques from two different research communities within Artificial Intelligence: Model-based Reasoning and Neural Networks. In particular, in this work we propose to use Possible Conflicts, which is a model decomposition technique from the Artificial Intelligence community to provide the structure (equations, inputs, outputs, and state variables) of minimal models able to perform fault detection and isolation. Such structural information is then used to design a grey box model by means of state space neural networks. In this work we prove that the structure of the Minimal Evaluable Model for a Possible Conflict can be used in real-world industrial systems to guide the design of the state space model of the neural network, reducing its complexity and avoiding the process of multiple unknown parameter estimation in the first principles models. We demonstrate the feasibility of the approach in an evaporator for a beet sugar factory using real data.
机译:可靠,及时的故障检测和隔离是确保复杂工业系统中连续性能,避免系统中故障传播并最大程度减少停机时间的必要任务。基于模型的诊断可以满足这些要求,并具有使用可重用模型的其他优点。但是,在大型工业系统中重用现有的复杂非线性模型进行诊断并非易事。在大多数情况下,模型的创建是出于诊断以外的其他目的,而且很多时候所需的分析冗余很小。这项工作中提出的方法结合了人工智能中两个不同研究社区的技术:基于模型的推理和神经网络。特别是,在这项工作中,我们建议使用可能的冲突,这是人工智能界的一种模型分解技术,旨在提供能够执行故障检测和隔离的最小模型的结构(方程,输入,输出和状态变量)。然后,利用这种结构信息通过状态空间神经网络来设计灰箱模型。在这项工作中,我们证明了针对可能冲突的最小可评估模型的结构可用于现实世界的工业系统中,以指导神经网络的状态空间模型的设计,降低其复杂性并避免多个未知过程第一原理模型中的参数估计。我们使用真实数据证明了该方法在甜菜制糖厂蒸发器中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号