首页> 外文期刊>Engineering analysis with boundary elements >h--Adaptive mesh refinement strategy for the boundary element method based on local error analysis
【24h】

h--Adaptive mesh refinement strategy for the boundary element method based on local error analysis

机译:h-基于局部误差分析的边界元方法的自适应网格细化策略

获取原文
获取原文并翻译 | 示例

摘要

An adaptive mesh refinement technique of the h type is proposed for the boundary element method (BEM). Error indicators at element level are evaluated based on a collocation scheme using ad hoc uniform norms that compare values of the field variables at successive iterations. Different approaches are applied depending on whether the boundary conditions are of the Neumann, Dirichlet, or Dirichlet- Neumann mixed type. For Neumann problems the error norms are evaluated using the standard discretised boundary integral equation (DBIE). Dirichlet problems are approached using both the standard DBIE and the hypersingular DBIE. Mixed problems are treated depending on the type of boundary condition. The technique is illustrated with examples for two-dimensional potential problems governed by the Laplace equation.
机译:针对边界元方法(BEM),提出了一种h型自适应网格细化技术。元素级别的错误指示符是基于并置方案评估的,该方案使用临时统一规范,该规范对连续迭代中的字段变量的值进行比较。根据边界条件是Neumann,Dirichlet还是Dirichlet-Neumann混合类型应用不同的方法。对于Neumann问题,使用标准离散边界积分方程(DBIE)评估误差范数。使用标准DBIE和超奇异DBIE都可以解决Dirichlet问题。根据边界条件的类型来处理混合问题。通过用Laplace方程控制的二维潜在问题的示例来说明该技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号