首页> 外文期刊>Engineering analysis with boundary elements >A pure boundary element method approach for solving hypersingular boundary integral equations
【24h】

A pure boundary element method approach for solving hypersingular boundary integral equations

机译:求解超奇异边界积分方程的纯边界元方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with discretization and numerical solution of a regularized version of the hypersingular boundary integral equation (HBIE) for the two-dimensional Laplace equation. This HBIE contains the primary unknown, as well as its gradient, on the boundary of a body. Traditionally, this equation has been solved by combining the boundary element method (BEM) together with tangential differentiation of the interpolated primary variable on the boundary. The present paper avoids this tangential differentiation. Instead, a "pure" BEM method is proposed for solving this class of problems. Dirichlet, Neumann and mixed problems are addressed in this paper, and some numerical examples are included in it.
机译:本文涉及二维Laplace方程的超奇异边界积分方程(HBIE)的正则化形式的离散化和数值解。该HBIE包含主体边界上的主要未知数及其渐变。传统上,该方程是通过将边界元方法(BEM)与边界上插值主变量的切向微分相结合来求解的。本文避免了这种切向差异。相反,提出了一种“纯” BEM方法来解决此类问题。本文讨论了Dirichlet,Neumann和混合问题,并提供了一些数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号