首页> 外文期刊>Engineering analysis with boundary elements >Adaptive reproducing kernel particle method using gradient indicator for elasto-plastic deformation
【24h】

Adaptive reproducing kernel particle method using gradient indicator for elasto-plastic deformation

机译:梯度指示器的自适应再生核粒子法弹塑性变形

获取原文
获取原文并翻译 | 示例

摘要

An adaptive meshless method based on the multi-scale Reproducing Kernel Particle Method (RKPM) for analysis of nonlinear elasto-plastic deformation is proposed in this research. In the proposed method, the equivalent strain, stress, and the second invariant of the Cauchy-Green deformation tensor are decomposed into two scale components, viz., high- and low-scale components by deriving them from the multi-scale decomposed displacement. Through combining the high-scale components of strain and the stress update algorithm, the equivalent stress is decomposed into two scale components. An adaptive algorithm is proposed to locate the high gradient region and enrich the nodes in the region to improve the computational accuracy of RKPM. Using the algorithm, the high-scale components of strain and stress and the second invariant of the Cauchy-Green deformation tensor are normalized and used as criteria to implement the adaptive analysis. To verify the validity of the proposed adaptive meshless method in nonlinear elasto-plastic deformation, four case studies are calculated by the multi-scale RKPM. The patch test results show that the used multi-scale RKPM is reliable in analysis of the regular and irregular nodal distribution. The results of other three cases show that the proposed adaptive algorithm can not only locate the high gradient region well, but also improve the computational accuracy in analysis of the nonlinear elasto-plastic deformation.
机译:提出了一种基于多尺度再生核粒子法(RKPM)的自适应无网格方法,用于非线性弹塑性变形分析。在提出的方法中,柯西-格林变形张量的等效应变,应力和第二不变量通过从多尺度分解位移派生而分解为两个尺度分量,即高尺度分量和低尺度分量。通过将高阶应变分量与应力更新算法结合起来,将等效应力分解为两个尺度分量。提出了一种自适应算法来定位高梯度区域并丰富该区域中的节点,以提高RKPM的计算精度。使用该算法,对应变和应力的高阶分量以及柯西-格林形变张量的第二个不变量进行了归一化,并以此为标准来进行自适应分析。为了验证所提出的自适应无网格方法在非线性弹塑性变形中的有效性,通过多尺度RKPM计算了四个案例研究。补丁测试结果表明,所使用的多尺度RKPM在分析规则和不规则节点分布方面是可靠的。其他三种情况的结果表明,所提出的自适应算法不仅可以很好地定位高梯度区域,而且还提高了非线性弹塑性变形分析的计算精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号