首页> 外文期刊>Engineering analysis with boundary elements >Optimal positioning of anodes and virtual sources in the design of cathodic protection systems using the method of fundamental solutions
【24h】

Optimal positioning of anodes and virtual sources in the design of cathodic protection systems using the method of fundamental solutions

机译:使用基本解决方案的方法在阴极保护系统设计中阳极和虚拟源的最佳定位

获取原文
获取原文并翻译 | 示例

摘要

The method of fundamental solutions (MFS) is used for the solution of Laplace's equation, with nonlinear boundary conditions, aiming at analyzing cathodic protection systems. In the MFS procedure, it is necessary to determine the intensities and the distribution of the virtual sources so that the boundary conditions of the problem are satisfied. The metallic surfaces, in contact with the electrolyte, to be protected, are characterized by a nonlinear relationship between the electrochemical potential and current density, called cathodic polarization curve. Thus, the calculation of the intensities of the virtual sources entails a nonlinear least squares problem. Here, the MINPACK routine LMDIF is adopted to minimize the resulting nonlinear objective function whose design variables are the coefficients of the linear superposition of fundamental solutions and the positions of the virtual sources outside the problem domain. First, examples are presented to validate the standard MFS formulation as applied in the simulation of cathodic protection systems, comparing the results with a direct boundary element (BEM) solution procedure. Second, a MFS methodology is presented, coupled with a genetic algorithm (GA), for the optimization of anode positioning and their respective current intensity values. All simulations are performed considering finite regions in R~2.
机译:用基本解法(MFS)求解具有非线性边界条件的拉普拉斯方程,旨在分析阴极保护系统。在MFS过程中,有必要确定虚拟源的强度和分布,以便满足问题的边界条件。与电解质接触的要保护的金属表面的特征是电化学势与电流密度之间的非线性关系,称为阴极极化曲线。因此,虚拟源强度的计算带来了非线性最小二乘问题。这里,采用MINPACK例程LMDIF来最小化由此产生的非线性目标函数,该非线性目标函数的设计变量是基本解的线性叠加系数和问题域外部虚拟源的位置。首先,给出了一些示例,以验证在阴极保护系统仿真中应用的标准MFS配方,并将结果与​​直接边界元素(BEM)解决方案进行比较。其次,提出了一种MFS方法,结合遗传算法(GA),用于优化阳极位置及其各自的电流强度值。考虑R〜2中的有限区域进行所有模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号