首页> 外文期刊>Engineering analysis with boundary elements >On two accurate methods for computing 3D Green's function and its first and second derivatives in piezoelectricity
【24h】

On two accurate methods for computing 3D Green's function and its first and second derivatives in piezoelectricity

机译:关于计算3D Green函数及其压电一阶和二阶导数的两种准确方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present two accurate methods for the calculation of the Green's function and its derivatives for three-dimensional anisotropic piezoelectric solids. In the first method, the Stroh formalism is used. The Green's function is expressed explicitly in terms of the Stroh eigenvectors, which are eigenvectors of the fundamental piezoelectricity matrix. The explicit derivatives of the 3D Green's function in terms of the derivatives of the Stroh eigenvalues and Stroh eigenvectors are derived for generally anisotropic piezoelectric materials. In the second method, we first express the Green's function and its derivatives in terms of novel infinite line integrals. Then the explicit expressions are obtained by the application of the Cauchy's residue theorem. The accuracies of both methods are verified by the numerical results compared with analytical solutions. Both explicit expressions are only applicable when the Stroh eigenvalues are distinct, which can be ensured by a small perturbation on some material constants in the case of degenerated eigenvalues.
机译:在本文中,我们提出了用于计算三维各向异性压电固体格林函数及其导数的两种准确方法。第一种方法是使用Stroh形式主义。格林函数用Stroh特征向量明确表示,Stroh特征向量是基本压电矩阵的特征向量。对于一般的各向异性压电材料,根据Stroh特征值和Stroh特征向量的导数,得出3D Green函数的显式导数。在第二种方法中,我们首先用新颖的无限线积分表示格林函数及其导数。然后通过应用柯西残差定理获得显式。数值结果与解析解进行了比较,验证了这两种方法的准确性。这两个显式表达式仅在Stroh特征值不同时才适用,在简并特征值的情况下,可以通过对某些材料常数进行较小扰动来确保这两个显式表达式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号