首页> 外文期刊>Engineering analysis with boundary elements >The Kriging integration method applied to the boundary element analysis of Poisson problems
【24h】

The Kriging integration method applied to the boundary element analysis of Poisson problems

机译:Kriging集成方法应用于泊松问题的边界元分析

获取原文
获取原文并翻译 | 示例

摘要

A novel efficient technique is presented for the evaluation of domain integrals that appear in the boundary element method (BEM). Herein, the source term is approximated with the use of radial basis functions, as in the dual reciprocity BEM. The proposed technique, called the Kriging Integration Method (KIM), comprises the use of the Simple Kriging Method in non-overlapping patches for obtaining the weights of the integration points located inside. As it is necessary to compute the integrals of the covariance function prior to obtaining these weights, this can be efficiently realized using the Cartesian Transformation Method. The domain integrals over all the generated partitions are then computed and added to obtain the value of the whole-domain integral. Using KIM, it is possible to evaluate approximately weakly singular domain integrals over simply or multiply connected domains without applying any transformation or regularization method to the singular integrand. The numerical results obtained in several 2D potential problems demonstrate that this integration scheme is as accurate as both the dual reciprocity method and RIM and less time consuming than the RIM.
机译:提出了一种新的有效技术,用于评估边界元方法(BEM)中出现的域积分。这里,源期限随着使用径向基函数的近似,如在双互惠BEM中。所提出的技术称为Kriging集成方法(Kim),包括在非重叠贴片中使用简单的Kriging方法,用于获得位于内部的积分点的权重。由于在获得这些权重之前计算协方差函数的积分,因此可以使用笛卡尔变换方法有效地实现这一点。然后计算所有生成的分区的域积分并添加以获取整个域积分的值。使用KIM,可以在不将任何转换或正则化方法应用于单数积分的情况下评估近似跨越奇异的域积分。在若干2D潜在问题中获得的数值结果表明,该集成方案与双互补方法和边缘都是准确的,而不是比轮辋少消耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号