首页> 外文期刊>Engineering analysis with boundary elements >A NURBS-enhanced improved interpolating boundary element-free method for 2D potential problems and accelerated by fast multipole method
【24h】

A NURBS-enhanced improved interpolating boundary element-free method for 2D potential problems and accelerated by fast multipole method

机译:NURBS改进的改进的无插值边界元插值方法,用于二维潜在问题,并通过快速多极点方法进行了加速

获取原文
获取原文并翻译 | 示例

摘要

Isogeometric analysis (IGA) has been widely applied in the finite element method and boundary element method (BEM), in which the geometry discretization error can be avoided. This paper proposes a NURBS-enhanced meshless improved interpolating boundary element-free method for 2D potential problems. In the proposed method, non-uniform rational B-spline (NURBS) basis functions are applied to reproduce the geometry like in IGA, and the boundary integral cells, called isogeometric cells, are defined by the knot vector of NURBS in parameter space. Thus, the geometry can remain the same at all stages because refining a NURBS curve will not change its shape. An improved interpolating moving least-square (IIMLS) method is applied to approximate the field in parameter space, and the boundary nodes can be defined using Greville abscissae definition. Compared with IGA in BEM, the shape functions obtained by IIMLS in the proposed method have the delta function property, and the boundary conditions can be applied directly. In addition, most methods for the treatment of the singular integrals in BEM can be applied easily in the proposed method. Fast multipole method is further coupled with the proposed method for large-scale computation.
机译:等几何分析(IGA)已广泛应用于有限元法和边界元法(BEM),在这些方法中可以避免几何离散误差。本文针对二维潜在问题提出了一种NURBS增强的无网格改进插值无边界元方法。在提出的方法中,非均匀有理B样条(NURBS)基函数被应用来重现IGA中的几何形状,并且边界整数像元称为等几何像元,由参数空间中NURBS的结向量定义。因此,几何形状可以在所有阶段都保持不变,因为细化NURBS曲线不会改变其形状。应用改进的插值移动最小二乘(IIMLS)方法来近似参数空间中的字段,并且可以使用Greville横坐标定义来定义边界节点。与BEM中的IGA相比,IIMLS所提方法得到的形状函数具有delta函数性质,可以直接应用边界条件。此外,在BEM中处理奇异积分的大多数方法都可以轻松地应用于所提出的方法中。快速多极方法还与提出的方法进行了大规模计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号